Physics-informed Machine Learning for Probabilistic Space Weather
Modeling and Forecasting: Thermosphere and Satellite Drag

Richard J. Licata's Piyush M. Mehta!

1. West Virginia University, Morgantown, WV

Introduction Dataset over a Solar Cycle

e |n low Earth orbit (LEO), atmospheric drag IS the |argest o _ 0 0 e A seven-year pOrtiOn during solar lcyCle 23 was identified that
source of uncertainty in orbit prediction and determination PhySICS Informed Machine Learnlng covered the full range of solar radio flux

stemming from inaccurate thermosphere models. Comparing Fio for Test and Training Data [1997-2008]
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Physical models are expected to be more accurate but are Reduction i .| |Temporal Dynamics by el e
limited by their computational cost. NAE ; : | Teeke 12002 20001
Goal: Develop a Physics-based, Data-Driven Framework for of o] . 5 o RN B : ;
Modeling and Forecasting Space Weather and Quantification T S The larger dataset results in improved performance with respect to
of the Associated Uncertainties. p— il — foet Bayesian Emulator models trained on Sim1 data.
Methodology e P v Ensemble Prediction
« Dimensionality reduction through Principal Component omenemEReh « Using model ensembles (equally weighted average) improved
Analysis (PCA) Expandl[;::ede to Full Operational Forecasting prediction performance

RMSE of just under 3% for ensemble mean as opposed to under 4% for the three individual
models over the 7-day period.
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Capturing temporal dynamics using Long-Short Term
Memory (LSTM) networks. Identify optimal architecture.
Characterize and quantify prediction uncertainty the
develop Bayesian Emulator.

Case Study: Investigate the impact of input uncertainty on
mass density and satellite orbits.
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Quantified Uncertainty

Dataset and Hyperparameter Optimization
« Sim1 is a density dataset derived from TIE-GCM by

Mehta et. al. [1] using simulating inputs to cover a large Elevated Solar Activity
range of solar and geomagnetic drivers in one year. Case Study 1 150 < Fi0.7= 190

. . « Used the International Space Station’s orbit
’ PCA was used to ISOIate the Spatlal and temporal p T e i 260 261 262 263 264 265 266 267 260 261 262 263 264 265 266 267
. . . _ as a case study to assess the effect of 520 | = forecast with Day of Year Day of Yaar
variations, reducing the state to size r = 10. t3in inout " " h t 95% Confidence
Trained on sim1 and Evaluated on 1997-2008 TIE-GCM data. uncertain Inputs on Its position with respec
, | | 250 | | | to time. 200 -
8| . | | 1. Monte Carlo sampling of the distribution .
200 /\ /\ /\ [\ ﬂ [\ /\ (generated based on six years of historical input ~ _180; Conclusions and Fu_ture WOl.'k. |
9_6 |~ data obtained from Space Environment S  LSTMs show great promise for predicting temporal mass density
X4 ,F 150 - Technologies) for variations in Fy, over a six-day = 160 variations as a function of space weather.
| 100! A Fée”?d- P | | 140- Models trained on Sim1 data portray capability of short and long-term
\/ U 2. EBvaluated LSTM on every input sample and used predictions making them useful for operations and science.
B | | | sn | | | resulting density arrays to propagate orbits. The 1901 Furth n i od to | " duri bruot
0 100 200 300 0 100 200 300 spatial and nonlinear dynamic effects can be seen 1 urther re_searc IS req_mre _ 9 IMprove perormance during abrup
Days Days in the density variations. L 00. changes in geomagnetic activity.
* Given only the initial state and the year-long inputs, it is 3. Quantified effect of input uncertainty on position : - ; - : : : Nonlinear dimensionality reduction will also be the focus of future
able to model the coefficients with accuracy as high as six days from epoch. The deterministic in-track Days from Epoch work.
11% (2001) and as low as 23% (2008) prediction has an error of ~7 km with respect to
the true position (zero difference). The absence of
— Tue  — Predicted input uncertainty quantification would result in 3 Radial Difference PDF [km]
large errors for operational collision probabilities. L 9. o 0.3 o 9.2 g
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