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Debris objects such as rocket bodies can pose a threat to active space assets in orbit and to assets and humans on the

ground through reentry. Orbit and reentry predictions for low-perigee resident space objects are strongly influenced

by atmospheric drag. Such predictions are typically performed using fixed or fitted drag/ballistic coefficients that can

result in large prediction errors. Accurate drag coefficients require, among other things, knowledge of the attitude.

This paper develops an approach to compute accurate drag coefficients for debris objects toward accurate orbit and

reentry predictions. The method uses a nonlinear least-squares estimator to estimate the attitude and angular

velocities using light curves for debris objects with known shape models. This paper focuses on rocket bodies in

particular. The estimated attitude and angular velocities are then used to compute the drag coefficients using a flat-

plate panelmethod. The technique is validated using simulated data scenarioswith a number of representative rocket

body models. Good performance is observed for the developed approach. Results show that neglecting attitude

variations for resident space objects in highly elliptic orbits can result in orbit errors ofmore than100kmafter just ten

brief passes through the atmosphere.

Nomenclature

A = quaternion mapping matrix from inertial to body
frame

A = projected area, m2

a = semimajor axis, km
adrag = acceleration due to drag, kg ⋅m ⋅ s−2
BC = ballistic coefficient, m2 ⋅ kg−1
bi = vertices of ith triangular facet, m
CA = body axial force coefficient
CD;ads = adsorbate covered surface drag coefficient
CD = drag coefficient
CD;overall = overall drag coefficient
CD;T = total drag coefficient
Cf = force coefficient
CN = body normal force coefficient
CP = pressure coefficient
CS = body side force coefficient
CD;s = clean surface drag coefficient
Cτ = shear coefficient
di, li = sides of ith triangular facet, m
e = eccentricity
F = photon flux, W ⋅m−2

Fobs = fraction of visible light reflecting off resident space
object surface

Freflect = Fresnel reflectance
Fsun = fraction of visible light striking resident space object

surface
f = dynamic model

g = measurement model
H = Jacobian matrix
h = measurement function
inc = inclination, deg/rad
J = inertia matrix
KL = Langmuir fitting constant, Pa−1

Ks = Goodman model coefficient
kB = Boltzmann constant, m2 ⋅ kg ⋅ s−2 ⋅ K−1

L = cost function
M = number of neutral chemical species in atmosphere
M0 = mean anomaly
m = mass, kg
mapp = apparent brightness magnitude
mavg = average mass of gas, kg
mp = particle mass, kg
N = number of triangular facets
n = uncorrelated measurement errors
nu;v = bidirection reflectance distribution function model

parameters
P = covariance
POx = partial pressure of atomic oxygen
q = quaternion
Rdiff = diffuse reflectance coefficient
Rspec = specular reflectance coefficient
s = speed ratio
Tw = surface temperature, K
T∞ = freestream atmospheric temperature, K

uIh = unit vector halfway between sun and observer in
inertial frame

uBn = unit normal vector in body frame

uIn = unit normal vector in inertial frame

uIobs = unit vector from space object to observer in inertial
frame

uIsun = unit vector from space object to sun in inertial frame

uBt = unit tangential vector in body frame

uBu;v = unit basis vector in body frame

uIu;v = unit basis vector in inertial frame

uBvrel = unit velocity vector in body frame

v = facet vertices
vmp = most probable speed, m ⋅ s−1
vrel = velocity relative to the atmosphere, m ⋅ s−1
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x = state vector
~y = measurement vector
Z = z-score
~z = measurements
α = total energy accommodation coefficient
αn = normal energy accommodation coefficient
αs = clean surface energy accommodation coefficient
αt = tangential energy accommodation coefficient
β = bidirectional reflectance distribution functions
γ = aerodynamic pitch angle in body frame, deg/rad
δ = Dirac delta function
ϵ = convergence tolerance or residual
η = bidirection reflectance distribution function model

exponent
Θ = fraction of surface coverage
θ = local flow inclination angle, deg/rad
μ = incident to surface particle mass ratio
ξ = Euler angles, deg/rad
Φ = state transition matrix
ϕ = solution flow
ρ = atmospheric mass density, kg ⋅m−3

σn = normal momentum accommodation coefficient
σt = tangential momentum accommodation coefficient
χ = mole fraction
ψ = aerodynamic yaw angle in body frame, deg/rad
Ω = right ascension of the ascending node, deg/rad
ω = argument of perigee, deg/rad
ωr = rotational rate, deg ⋅s−1

I. Introduction

T HE United States Space Surveillance Network, operated under
the United States Strategic Command, faces the unique

challenge of tracking more than 22,000 resident space objects
(RSOs) and providing critical collision avoidance warnings to the
military, NASA, and commercial operators. However, because of the
large number of RSOs and the limited number of sensors available to
track them, it is impossible to maintain persistent surveillance.
Observation gaps result in large propagation intervals between
measurements and close approaches. The observation gaps coupled
with nonlinear RSO dynamics result in difficulty with modeling the
probability distribution functions for the expected state of the RSO.
In particular, RSOs that traverse the low-Earth-orbit (LEO)
environment are heavily influenced by atmospheric drag, which is
difficult to model accurately.
In this paper, we develop a new method that uses nonresolved

photometric data to estimate the attitude and rotational rates of
nonresolved rocket bodies, which are then used to compute time-
varying drag coefficients CD for accurate orbit prediction.
Nonresolved photometric data have been studied as a mechanism
for space object characterization. Photometry is the measurement of
an object’s flux or apparent brightness measured over a wavelength
band. The temporal variation of photometric measurements is
referred to as the photometric signature or light curves. The optical
photometric signature of an object contains information about
shape, attitude, size, and material composition [1–7]. Light-curve
techniques have been used to estimate the shape and state of asteroids
[8,9]. The work of Calef et al. [10] uses light curves and thermal
emissions to recover the three-dimensional shape of an object,
assuming its orientation with respect to the observer is known. The
benefits of using a light-curve-based approach over the radar- and/or
imaging-based techniques is that it is not limited to large objects in
lower orbits and it can be applied to small and dim objects in higher
orbits, such as geosynchronous orbits. Here, we use light-curve data
because they provide amechanism to estimate both attitude aswell as
rotational rates [1–7].
Atmospheric drag can add large uncertainties to the predicted state

of the RSO and cause significant inaccuracies in the conjunction
assessments. In the context of space situational awareness,
atmospheric drag is the largest source of uncertainty in accurately
predicting the orbits and reentry of RSOs that traverse the LEO

environment. The large uncertainties in orbit and reentry predictions
can also influence mission design in terms of predicted lifetime and
fuel requirements. In addition, large nonresolved debris objects such

as rocket bodies have a higher probability of surviving the harsh
reentry environment. The surviving parts can contain hazardous
radioactivematerials or unused hydrazine that can cause damage and
casualties within a populated area. Predicting reentry also has
military applications. The uncertainties are derived mainly from
mismodeling of the drag coefficient and atmospheric mass density
[11]. The theoretical model used for drag calculations is

adrag � −
1

2
ρ
CDA
m

v2rel
vrel
jvrelj

(1)

where adrag is the acceleration due to drag, ρ is the atmospheric mass

density, CD is the drag coefficient, A is the projected area
perpendicular to the velocity direction, m is the mass, and vrel is the
velocity of the RSO relative to the atmosphere.
The CD has a direct impact on orbit prediction through the drag

model. The errors are caused due to the use of inaccurate and
nonphysical (fixed and fitted) CD. Conjunction assessments and
reentry predictions are typically performed using either fixed or fitted
CD. A set of observations, typically made using a radar or telescope,
over several orbits or days is used to compute fitted ballistic
coefficients (BCs), defined as CDA∕m. The fitted BCs are then used

to propagate the orbit through observation gaps, sometimes over a
long period of time. This propagation using fitted BCs can result in
large errors in orbit and reentry predictions. Accurate estimates of
CD are essential in reducing orbit and reentry prediction errors,
which in turn require knowledge of the attitude and the associated
rotational rates.
A fixed CD value of 2.2was derived and used for compact satellites

early in the Space Age [12]. This derived value has been regularly
applied to RSOs with complex geometry because of the resulting

simplification in the analysis of the drag data. For high-aspect-ratio
objects such as rocket bodies, there can be a large amount of shear that
can drastically increase the CD. Fitted CD can account for variations
due to altitude and solar conditions but do not account for the small-
scale temporal variations along the orbit. Physical CD, characterized
by the interaction between the atmosphere and the object, are
determined by the exchange of energy and momentum between the

atmospheric molecules and the RSO surface.
Early models for atmospheric mass density were derived from the

orbital decay of satellites observed and averaged over several orbits

using fixed CD to simplify the analysis [12]. Several atmospheric
models, such as Naval Research Laboratory Mass Spectrometry and
Incoherent Scatter Extended (NRLMSISE-00) [13] and the High
Accuracy Satellite DragModel (HASDM) [14], have been developed
and used over the last decades; however, they are semi-empirical in
nature and do not account for many of the complex physical
phenomena that drive variations in the upper atmosphere. First-

principles-based physical models of the upper atmosphere, such as
the Global Ionosphere Thermosphere Model [15] and Thermo-
sphere–Ionosphere–Electrodynamics General Circulation Model
[16], offer a higher-fidelity approach but require calibration and
validation and are expensive to evaluate.
HASDM, the current Air Force standard, is based on observation

of calibration satellites. These satellite observations are used to
estimate corrections to atmospheric model parameters in real time
based on their orbit determination solutions. The corrections can be
estimated as frequently as every 3 h [14]. Orbits passing within

the atmosphere are perturbed by a number of factors including the
density, drag coefficient, attitude, and shape of the RSO. The
satellites used for the HASDM calibration process are restricted by
the requirement and assumption of a relatively constant BC. The
model BC is estimated as part of an orbit determination process, and
the true BC is the average of the model BCs over nearly 3200 orbits.
The correction to the baseline density model is then estimated as the

ratio of the model and true BC. This use of averaged BCs prohibits
modeling of the small-scale spatial density variations.
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In this paper, we develop a new approach to facilitate improved CD
estimates for RSOs toward collision avoidance, reentry prediction,
and the possible use of debris objects that do not have relatively
constantBCs for calibration of atmosphericmodels. Themethod uses
light-curve measurements to estimate the attitude and rotational rates
of RSOs with known shape models. The photometric observations
used to estimate the RSO’s attitude and angular rates can be collected
from a variety of sources. The attitude and angular velocities are
estimated using a nonlinear least-squares (NLSQ) estimator. This
paper uses a NLSQ estimator [17] to solve the inverse problem of
determining angular velocity and orientation given light-curve
measurements. The NLSQ approach is one of the simplest inversion
methods for solving nonlinear inverse problems. The nonlinear
equations that model the RSO rotational dynamics and light-curve
measurements are linearized and solved recursively [18].
The estimates from the NLSQ estimator are propagated forward in

time and used to compute the CD for the rocket body using a flat-plate
panel method. We use a flat-plate panel method because of the
simplified shape models used for the rocket bodies. Nearly all RSOs
are in LEO at altitudes above∼200 km, where the atmosphere is free
molecular i.e. atmospheric particles do not undergo intermolecular
collisions. In free molecular flow, collisions between atmospheric
particles are so infrequent that they can be neglected. Under such
conditions, closed-form solutions for the CD are available for simple
convex RSO geometries such as a sphere, flat plate, and cylinder
[19,20]. Closed-form solutions only exist for convex geometries
because the concave geometries allow multiple reflections from the
surface of the RSO and break a fundamental assumption of the
solution that the incident velocity distribution function is
Maxwellian. Simulations using computational methods, such as
direct-simulationMonte Carlo, produce accurate estimates for the CD
but are computationally expensive, and therefore modeling the CD
becomes necessary [21,22].
The closed-form solution for the CD of a flat plate with a single side

exposed to the flow is especially useful because any arbitrary geometry
(convex or concave) can be decomposed into small flat-plate panel
elements. The total CD for an arbitrary geometry is then approximated
as the sum of the CD of each of the flat-plate elements. For convex
geometries, the approximation converges to the true CD as the size of
the flat-plate elements go to zero. For concave geometries, the
approximation does not account for multiple reflections and flow
shadowing and is generally in error by a few percent.
The developed methodology has the potential to substantially

reduce orbit and reentry prediction uncertainties and provide
extensive spatial and temporal coverage of density data sources
without the need for launching expensive satellites. The organization
of this paper is as follows. Section II provides the shape-model
definition followed by Sec. III, which describes the light-reflection
model for calculation of photon flux captured by a sensor. The
following Sec. IV describes the NLSQ method, followed by Sec. V
that describes the flat-panel method used to compute the CD.
Section VI presents and provides a discussion of the results, followed
by conclusions and recommendations for future work.

II. Shape-Model Definition

The shapemodel considered in this paper consists of a finite number
of flat facets, inwhich each facet has a set of basis vectors withwhich it
is associated. Figure 1 shows a simple example of a spherical shape

model alongwith the definition of the basis vectors that consist of three
unit vectorsuBn ,u

B
u , andu

B
v . Theunit vectoru

B
n points in the direction of

the outward normal to the facet. For convex surfaces, this model
becomes more accurate as the number of facets is increased. The
vectors uBu and uBv are in the plane of the facet. The RSOs are assumed
to be rigid bodies, and therefore the unit vectors uBn , u

B
u , and u

B
v do not

change since they are expressed in the body frame.
The light-curve and the solar-radiation-pressure (SRP) models

discussed in the next sections require that these vectors be expressed
in inertial coordinates, and since the RSO body is rotating, these
vectors will change with respect to the inertial frame. The body
vectors can be rotated to the inertial frame by the standard attitude
mapping given by

uBk � A�qBI �uIk; k � n; u; v (2)

where A�qBI � is the attitude matrix mapping the inertial frame to the
body frame using the quaternion parameterization. Furthermore, the
unit vector uIsun points from the RSO to the sun direction, and the unit
vector uIobs points from the RSO to the observer. The vector uIh is the
normalized half-vector between uIsun and uIobs. This vector is also
known as the sun–RSO–observer bisector. Each facet i has an areaAi

with which it is associated. Once the number of facets has been
defined and their basis vectors are known, the areasAi define the size
and shape of the RSO. To determine the SRP forces and light-curve
characteristics, the surface properties must be defined for each facet.
The shape model used for this paper uses triangular facets defined

by the location of their vertices bi with respect to the center ofmass of
the object. Then, the area of the ith triangular facet is given by
Ai � �1∕2�kdi × lik, where di and li are the vectors defining two
sides of the facets or di � bi;v1 − bi;v2 and li � bi;v1 − bi;v3 . The
three vertices of the ith triangular facet are represented by v1, v2, and
v3. The unit normal vector is given by

uBn �i� �
di × li
kdi × lik

(3)

III. Ashikhmin–Shirley Model

The optical sensor at the observing site records, in addition to the
azimuth and elevation angles, the magnitude of the brightness of the
RSOs. The observed brightness is a function of the manner in which
light is reflected off the surface of the object. The two most common
models used for reflection of light are diffuse, in which the light is
scattered equally in all directions (Lambertian), and specular, in
which the reflected light is concentrated about some direction
(mirrorlike).
The brightness of an object in space can also be modeled using an

anisotropic Phong light diffusion model or the Ashikhmin–Shirley
(AS) model [23], which is based on the bidirectional reflectance
distribution function (BRDF). We choose to use the AS BRDF
model, among many that exist, because it has been known to provide
fairly realistic light-curve reproduction [24]. There are multiple
BRDF functions. The BRDF models the light distribution scattered
from the surface due to the incident light and at any point on the
surface as a function of two directions, the direction from which the
light source originates and the direction from which the scattered
light leaves the observed surface. The model in [23] decomposes the
BRDF into a specular βspec and a diffuse βdiff component. The two
terms sum to give the total BRDF:

βtotal � βspec � βdiff (4)

Reference [23] develops a model for continuous arbitrary surfaces
but simplifies for flat surfaces. This simplified model is employed in
this paper as shapemodels are considered to consist of a finite number
of flat facets [23]. Therefore, the total observed brightness of an
object becomes the sum of the contribution from each facet. Under
the flat facet assumption, the specular term of the BRDF for the ith
facet becomes [23]

a) Shape model b) Reflection geometry

Fig. 1 Space object shape model and reflection geometry.
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βspec�i� �
���������������������������������������������nu�i� � 1��nv�i� � 1�p

8π

×
�uIn�i� ⋅ uIh�η

uIn�i� ⋅ uIsun � uIn�i� ⋅ uIobs − �uIn�i� ⋅ uIsun��uIn�i� ⋅ uIobs�
Freflect�i�

(5)

where the exponent η is given by

η � nu�i��uIh ⋅ uIu�i��2 � nv�i��uIh ⋅ uIv�i��2
f1 − �uIh ⋅ uIn�i��2g

(6)

with the Fresnel reflectance given as

Freflect�i� � Rspec�i� �
h
1 − Rspec�i�

ih
1 − uIsun ⋅ uIh

i
5

(7)

where Rspec is the specular reflectance coefficient. The parameters of
the Phong model that dictate the directional (locally horizontal or
vertical) distribution of the specular terms are nu and nv.
The terms in Eq. (5) are functions of the reflection geometry, which

is described in Fig. 1. The diffuse term of the BRDF is given as

βdiff�i� �
�
28Rdiff�i�

23π

�h
1 − Rspec�i�

i�
1 −

�
1 −

uIn�i� ⋅ uIsun
2

�
5
�

×
�
1 −

�
1 −

uIn�i� ⋅ uIobs
2

�
5
�

(8)

where Rdiff�i� is the diffuse coefficient for the ith facet. The model
discussed previously assumes only single scattering and no self-
shadowing.
For this paper, we assume that each facet has the same material

parameters (specular coefficients, diffuse coefficients, and other
reflection parameters discussed in the next section). We usedRspec �
Rdiff � 0.5 and nu � nv � 10. In practice, these values must be
based on the known properties of the rocket body.
The apparent magnitude of an RSO is the result of sunlight

reflecting off its surfaces along the line of sight to an observer. The
fraction of visible sunlight that strikes an object (and is not absorbed)
is computed as

Fsun�i� � Csun;vis
h
uIn�i� ⋅ uIsun

i
(9)

where Csun;vis � 1062 W∕m2 is the power per square meter
impinging on a given object due to visible light striking the surface. If
for a facet either the angle between the surface normal and the
observer’s direction or the angle between the surface normal and sun
direction is greater than π∕2, there is no light reflected toward the
observer from the facet, and the fraction of visible light for that facet
is set to Fsun�i� � 0.
The fraction of sunlight reflected off a facet is then computed as

Fobs�i� �
Fsun�i�βtotal�i�A�i��uIn�i� ⋅ uIobs�

kdIk2 (10)

The light reflected off each facet is then used to compute the total
photon flux measured by an observer as

F �
"XN

i�1

Fobs�i�
#

(11)

The total photon flux is then used to compute the apparent
brightness magnitude as

~mapp � −26.7–2.5log10

���� F

Csun;vis

����� vsensor (12)

where vsensor is the measurement noise associated with the apparent
magnitude and −26.7 is the apparent magnitude of the sun [2]. We
assume a zero-mean white-noise process with a standard deviation σ
for vsensor.

IV. Nonlinear Least Squares

The estimation approach chosen for this paper is theNLSQmethod.
This method is a batch method and therefore processes all the data at
once. To apply the NLSQ method to attitude and angular velocity
determination, one must linearize both the measurement and dynamic
models. Also, the attitude representation chosen for this paper is the
quaternion, and therefore the attitude error must be approximated by a
small angle error to avoid the quaternion unit constraint [18]. The goal
is to estimate a state xk � � qT�tk� ωT

r �tk� �T (composed of the full
quaternion and the three angular velocity components) for times tk
from measurements ~zk for k � 1; : : : ; p, where p is the number of
measurements.
Consider the dynamic and measurement models, assuming

measurements with uncorrelated measurement errors,

xk�1 � fk�xk� (13a)

~zk � gk�xk� � nk (13b)

where nk ∼N �nk; 0;Σ2
k� and Efnknjg � δkjΣ2

k with δkj being the
Kronecker delta function. We assume no process noise, but it can be
added when processing real data to account for unmodeled or
mismodeled dynamics. Equations (13a) and (13b) can then be used to
estimate the initial condition of the system xo by writing the
measurements as ~zk � gk�ϕk�xo�� � nk where ϕk�⋅� takes the initial
conditions and maps them to time k. The measurements can be
written in vector form as

~y � h�xo� � v (14)

where ~y � � ~zT1 ; : : : ; ~zTp�T , v ∼N �v; 0; R�, R � diag�Σ2
1; : : : ;Σ2

p�,
and h�⋅� � gk�ϕk�⋅��. In the previous and following equations, the
∼ overhead accent signifiesmeasured values, whereas the ^ overhead
accent signifies predicted values. The system in Eq. (13) can be
solved using the NLSQ method by linearizing the system about the
current estimate. Using a Taylor series expansion, the measurement
function from Eq. (14) can be written as

h�xo� � h�x̂o� �H�x̂o��x̂o − xo� �O�2� (15)

where O�2� is neglected higher-order terms and H is given as

Hi
k �

∂gk�xk�
∂xk

∂ϕk�xo�
∂xo

����
xo�x̂io

� ∂gk�xk�
∂xk

Φ�tk; t0� (16)

where x̂io is the estimate for the ith iteration, Hi � �Hi
1; : : : ; H

i
p�T ,

and Φ�tk; to� is the state transition matrix about the estimated
trajectory calculated as shown in theAppendix. The derivatives of the
measurement function gk�⋅� and the dynamic function ϕk�⋅�must be
calculated. The derivatives of gk�⋅� can be derived from the equations
in Sec. III and are given in [23]. The derivatives of ϕk�⋅� involve the
linearization of attitude kinematics and dynamic equations and are
shown later in the Appendix.
The NLSQ solution is obtained by minimizing the following cost

function [18]:

L�x̂o� �
1

2

h
~y − h�x̂o�

i
T
R−1

h
~y − h�x̂o�

i
(17)

Note that theminimization problem inEq. (17) is a constrained one
and is usually solved using unconstrained local attitude parameter-
ization [25]. Therefore, this paper uses two attitude representations, a
local error attitude and a global attitude parameter, which use the
quaternion q and the small Euler angle δξ, respectively. The state
vector for the local error attitude is given by xo;r � � δξT ωT

r �T. The
formal NLSQ iterative solution using the local error attitude can then
be written as

x̂i�1
o;r � x̂io;r �

h
HiTR−1Hi

i−1
HiTR−1

h
~y − h�x̂io�

i
(18)
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where x̂io;r � � �δξ̂i�T �ω̂i
r�T �T with

Pi
o � E

n
�x̂io;r − xo;r��x̂io;r − xo;r�T

o
and Pi

o � �HiTR−1Hi�−1

(19)

and where the predicted covariance for the residuals is calculated as

Pi
yy ≡ E

n
�ŷi − ~y��ŷi − ~y�T

o
� HiTPi

oH
i � R and ŷi � h�x̂io�

(20)

Equation (19) gives the predicted state at the current iteration in the
Euler angle ξ space, which under the small angle assumption can be
converted to the quaternion q space as

q̂i�1 � q̂i � 1

2
Ξ�q̂i�δξ̂i�1

(21)

where δξ̂i�1
is set to zero after each iteration andΞ�⋅� is defined in the

Appendix. The state vector using the global attitude parameter is
given by x̂i�1

o � � q̂i�1T ω̂T
r �T. The estimate of x̂o;r is obtained

using Eq. (18) iteratively until a termination condition is met. We
provide the solver with two conditions, the maximum number of
iterations imax and the relative tolerance computed as

ϵ � kx̂i�1
o;r − x̂io;rk
kx̂io;rk

(22)

We use a residual tolerance of ϵ � 1 × 10−15 (the tolerance is not
optimized, and a larger value may be used) and set the maximum
number of iterations at imax � 200 for this paper. The solution allows
for a covariance to be computed for each time step by usingPo and the
linearized dynamic equations, which in turn can be used to represent
uncertainty in CD that is computed from the orientation estimates.
The NLSQ algorithm requires the user to provide an initial guess

for the state of the system. TheNLSQestimator can be sensitive to the
accuracy of the initial state, resulting in either divergence or
convergence onto a local minima that is different from the true
solution. Converging onto the true solutionmay require the data to be
processedmultiple times through theNLSQalgorithm. The approach
used for initializing the NLSQ algorithm is discussed in Sec. VI.

V. Flat-Plate Panel Method

The attitude estimate from theNLSQestimtor is propagated forward
in timewith the orbit and used to compute CD when theRSO altitude is
below 1000 km. The pressure and shear contribution of each facet in
the free molecular flow is computed using the closed-form solution of
Schaaf and Chambre [19]. The pressure CP and shear Cτ solutions as
functions of the local flow inclination angle θ for a flat plate with a
single side exposed to the flow and quasi-specular reflection are given
in Eqs. (23) and (24), respectively. The local inclination angle is
defined as θi � arccos�−vrel ⋅ uBni�, where uBn is the facet normal unit
vector in the body frame and i represents the ith facet,

CPi
� 1

s2

2
4
0
@2−σn���

π
p scosθi�

σn
2

�������
Tw

T∞

s 1
Ae−�scosθi�2

�
8<
:�2−σn�

�
�scosθi�2�

1

2

�
�σn

2

���������
πTw

T∞

s
scosθi

9=
;
h
1�erf�scosθi�

i35
(23)

Cτi � −
σt sinθi
s

���
π

p
�
e−�scosθi�2 � ���

π
p

s sinθi�1� erf�scosθi��
�

(24)

Here, σn and σt are the normal and tangential momentum
accommodation coefficients, respectively; Tw is the object wall

temperature; T∞ is the atmospheric temperature; and s is the speed
ratio defined by

s � jvrelj
vmp

(25)

where vmp is the most probable speed of a Maxwellian velocity
distribution at the local translational temperature of the atmosphereT∞
and is defined by

vmp �
���������������
2kBT∞

mp

s
(26)

Here, kB is the Boltzmann constant, andmp is the atmospheric particle
mass. The error function erf�x� is defined as

erf�x� � 2���
π

p
Z

x

0

e−t
2

dt (27)

The differential force coefficientCf due to a triangular element can
then be calculated as (we use a formulation similar to that in [26])

dCfi �
�
CPi

uBni � Cτiu
B
ti

	
Ai (28)

whereuBt is the unit tangential vector in the body frame. The tangential
vector lies in the plane of the facet in a direction opposite to the local
flow direction. The normalized tangential vector is calculated by
subtracting the unit velocity vector from the isolated normal
component as

uBt � uBn �uBvrel ⋅ uBn � − uBvrel�������������������������������
1 − �uBvrel ⋅ uBn �2

q (29)

where uBvrel is the unit velocity vector. Assigning the object a
conventional flight dynamics body axis allows us to define uvrel in
terms of body orientation angles γ (pitch) and ψ (yaw) as

uvrel � � cos γ cosψ − cos γ sinψ sin γ � (30)

The total force coefficients along the body axes (axialA, side S, and
normalN) can then be calculated as the integral of the differential force
coefficients over the entire body as2

4 CA
CS
CN

3
5 � 1

Aref

ZZ
S
dCfi (31)

where N is the number of facets making up the body and Aref is the
reference projected area calculated as

Aref �
XN
i�1

Ai cos�θi�ζ (32)

where ζ � 1 for abs�θi� ≤ 90 deg and ζ � 0 otherwise. The CD for
the object can then be calculated using the body axis force coefficients
in conjunction with the body orientation angles as

CD �
2
4 CA
CS
CN

3
5T

⋅

2
4 cos γ cosψ
− cos γ sinψ

sin γ

3
5 (33)

A. Surface Contamination

The momentum and energy exchange that characterizes the
physical CD is influenced by the adsorption of atomic oxygen that
may partially or completely cover the surface of a RSO in LEO. The
atmospheric particles interacting with a clean surface are assumed to
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be specularly reflected, while those that interact with the atomic

oxygen covering the surface are assumed to reflect diffusely after

surrendering a finite amount of its incoming energy.
The energy accommodation coefficient has been recently modeled

as a function of the partial pressure of atomic oxygen using a

Langmuir adsorption isotherm and is described as [27]

CD � �1 − Θ�CD;s � ΘCD;ads (34)

where CD;s is the drag coefficient based on a clean surface, CD;ads is

the drag coefficient based on a surface completely covered with an

adsorbate (atomic oxygen), andΘ is the fraction of surface coverage.

CD;s and CD;ads are computed separately using Eqs. (23–33) as

described previously, in which the total energy accommodation

coefficient for the adsorbate is assumed to be unity and that for a clean

surface is calculated using Goodman’s formula [28] as

αs �
Ksμ

�1� μ�2 (35)

where the value of Ks can lie between 2.4 and 3.6 depending on the

shape of the RSO. In this paper, we use a value of 3.0 for the rocket

bodies [21].
Furthermore, in the quasi-specular Cercignani–Lampis–Lord

(CLL) [29] model used in this paper, the total energy accommodation

coefficient is the average of the normal αn and tangential αt energy
accommodation coefficients:

α � αn � αt
2

(36)

In the CLLmodel, αt is unity when σt is unity. Therefore, Eq. (36)
can be rewritten as

αn � 2α − 1 (37)

Goodman’s model for the energy accommodation of a clean

surface is combined with Eq. (37) to find the normal energy

accommodation coefficient for the surface as

αn � 2
Ksμ

�1� μ�2 − 1 (38)

The normal energy accommodation coefficient αn is used to

calculate the normal momentum accommodation σn using the

following relation [27], which can be plugged into Eq. (23). An

extensive literature search reveals that σt is unity for free molecular

flow, which is plugged into Eq. (24) [30–32],

σn � 1 −
��������������
1 − αn

p
(39)

The surface coverageΘ in Eq. (34) is modeled using the Langmuir

isotherm

Θ � KLPO

1� KLPO

(40)

where KL is the Langmuir fitting constant and PO is the partial

pressure of atomic oxygen [27]. Models for use with both the diffuse

and quasi-specular reflection kernels have been developed in [27].

B. Mixture of Gases

The atmosphere in LEO is comprised of a mixture of gases. For

computing the CD in LEO, six different neutral species are typically

accounted for, and this paper uses the same [21,22,27,33]. When

computing the CD for a mixture of gases, the total CD is the sum

of the individual species CD weighted by the species mole fraction

and particle mass and normalized by the average mass of the

mixture mavg:

CD;T � 1

mavg

XM
j�1

χjmjCD;j (41)

NRLMSISE-00 is used to compute the mole fractions χj for each
species. Here, M is the total number of species, and mavg is

computed from

mavg �
XM
j�1

χjmj (42)

Finally, the overall CD is computed as follows:

CD;overall � �1 − Θ�
XM
j�1

CD;T�s� � Θ
XM
j�1

CD;T�ads� (43)

VI. Results

This section describes the setup and discusses results for the

simulation cases using the proposed method. We consider four

different shapemodels as shown in Fig. 2. The shapemodels used are

a cylinder with round top (Fig. 2a), a cylinder (Fig. 2b), an Atlas

upper stage (Fig. 2c), and a Falcon 9 upper stage (Fig. 2d) model.

Eachmodel uses the same initial attitude and positions states andwith

the simulation conditions given in the following:
1) The geographic position of the ground site is 0° North, 0° West

with 0 km altitude.
2) Theorbital elements aregivenbya�25864.16932km,e�0.743,

inc � 30.0083 deg, ω � Ω � 0.0 deg, andM0 � 90.065 deg.
3) The initial time of the simulation was 15 June, 2010, at 18:00.00

UTC (coordinated universal time).
4) An initial quaternion is

qBI �
�
0.7041; 0.0199; 0.0896; 0.7041

�
T

5) A constant rotation rate, defined as the body rate with respect to
the inertial frame (represented in body coordinates), is used and is
given by:

ωB
rB∕I � �0.200; 0.0180; 0.0524�T rad∕s

The true quaternion and angular velocity are shown in Fig. 3 with

all simulation cases having the same true orientational trajectories.

The trajectories are derived using the Euler kinematic equations

provided in the Appendix. For all the simulations, measurements of

apparent magnitude are produced using zero-mean white-noise error

processes with a standard deviation of 0.05 for magnitude. The time

interval between the measurements is set to 0.5 s, and data are

simulated for 120 s, which is a reasonable assumption for the

collection of real data for the rotational rates used.
The initial guess for the state provided to the NLSQ algorithm for

the simulation cases is sampled from a uniform distribution. The

uniform distribution uses the true state as the mean with errors of

50 deg for all three attitudes and 1000 deg∕h for the rotational rate. It
is important to note that when processing real light-curve

measurements larger errors can be used for the attitude, while the

angular velocity distribution can be based on practical knowledge.

The sampling strategy is shown in Fig. 4. The NLSQ estimator

diverges if the sample falls outside the radius of convergence.

Convergence is judged based on performance through minimization

of the cost function given in Eq. (17). The convergence is also judged

based on the measurement residuals and the z-score for the

measurements computed as [34]

Z �
�
ŷi − ~y

	
T
Pi−1
yy

�
ŷi − ~y

	
(44)
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The residual test is also used because in certain cases the NLSQ

estimator converges but the estimated light curve does not have good

residuals. The distribution is sampled until convergence is achieved.
Figures 5–8 show the magnitude measurements simulated using

Eq. (12) and the estimated solution using the NLSQ algorithm for the

cylinder with a round top, the cylinder, the Atlas, and the Falcon

shape models, respectively. The light-curve profiles for the different

geometrymodels canvary significantly depending on the initial state.

In this instance, the light curves for all the shape models have similar

overall profiles with differences arising due to the concave features of
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Fig. 3 True attitude and angular velocity profile.
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Fig. 2 Representative shape models for rocket bodies.

Fig. 4 Sampling for NLSQ initial-state guess.
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the different shape models. For example, light curves for all shapes
models have two peaks due to the smooth side (head) of the object.
However, a third peak seems to be generated due to the concave
features that starts small for the cylindermodel but grows for theAtlas
model that has a small nozzle to a large peak for the Falconmodel that
has a large nozzle. The round top model has no sharp or concave
features in the geometry, and therefore the entire light curve is smooth
and continuous. The third peak for the other three models with
concave features becomes sharper with more complex features
resulting in light curves with abruptly changing magnitudes. For all
the shapemodels, the proposed approach shows good performance in

terms of the measurement residual and by how well the predicted
observations match the observations as shown in Figs. 5–8. The scale
in the figures for the apparent magnitude or brightness of the RSO is
reversed because a lowermagnitude represents a brighter source; e.g.,
the apparent magnitude of the sun is −26.74.
The initial-state vector estimates from the NLSQ estimator for the

four different shapemodels are given inTable 1. For all shapemodels,
the NLSQ solution converges onto the true solution. It is possible,
however, that the light curves for the models do not show the same
observability in terms of the estimated attitude and angular velocity.
TheNLSQ approach can converge to local solutions that do notmake
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Fig. 5 NLSQ results for cylinder with round top rocket body model. Left: measured and estimated magnitude; right: residual.
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Fig. 6 NLSQ results for cylinder rocket body model. Left: measured and estimated magnitude; right: residual.
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Fig. 7 NLSQ results for Atlas rocket body model. Left: measured and estimated magnitude; right: residual.
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the true rotational states very well but fit the observations. This is due

to the fact that these shapes have symmetries and therefore have

multiple possible solutions. A way around this could be to estimate

just the axis of symmetry and not the full attitude. These ambiguities

are briefly discussed in the following and will be studied more in

future work, but the method can still predict the observations very

well. It should also be noted that, because of the symmetries in the

shape models, the convergence onto a local and not a true solution

does not affect the calculations for CD.
In this paper, we estimate the full quaternion because we develop

the method for application to all objects (symmetric and

nonsymmetric). In the results in Table 2, it is observed that the

uncertainty in the initial state is the largest in the symmetry direction

ξz. The full quaternion is observable in this paper because of the

facets (meshing) that break the symmetry. In the limit where a large

enough number of facets used maintains the symmetry, it is expected

that this uncertainty will be very large, possibly infinity.

With this in mind, we modified our code to estimate only two

observable attitude states. We ran a test case with Falcon, the results

for which are also presented in Tables 1 and 2. It is seen that the

estimator doeswell againwith smaller uncertainties in the observable

states. The angular velocity corresponding to the unobservable

attitude state is nonzero because of the cross-coupling in the

momentum, which makes the angular velocity observable.

VII. Effect of Attitude on Orbit and Reentry Prediction

In the previous section, an approach for estimating the attitude and
the corresponding rotational rates using the NLSQ estimator with
light-curve data was presented. The method is shown to work well in
estimating the attitude and its variations for the simulated cases. In

this section, we present an analysis to characterize the importance of
estimating the attitude on drag and orbit prediction. The estimates
from the NLSQ solution given in Table 1 are propagated forward in
time with the orbit and used to compute CD using the equations from
Sec. V. The CD computed for the different shape models along their
respective orbit at altitudes below 1000 km are shown in Fig. 9. The
differences in the CD shown are due to the shape models since all the
models have the same rotational dynamics. It is assumed that there are
no external torques acting on the rocket body. It is seen that the
attitude can cause significant variations in the CD for each of the
rocket body shape models (by up to 50% between the minimum and
maximum values for the Falcon rocket body). The uncertainty in CD
can be characterized using the solution from the NLSQ estimator and
the associated variance given in Table 2. Sampling is performed on
the NLSQ solution, and CD are computed for each of these samples.
Figure 10 shows the uncertainty in CD due to the uncertainty in the

NLSQ solution for the round top shape model. The uncertainty along
the orbit is computed using unscented transformations [35] and
validated with a Monte Carlo simulation using 1000 members. It is
seen that the covariance for CD does change along the trajectory and
has different sensitivities at different altitudes. These values could be
used directly for orbit propagation and orbit determination.
Figure 11a shows the comparison of CD for a rotating and

nonrotating Falcon rocket body model. It is seen from Fig. 11a that
Falcon undergoes quick attitude variations with the CD varying a
significant amount of up to 50%. For completeness, we also use a
constant value of CD representative of using a constant fitted value of
BCs. The constant CD is computed as the mean of the CD for the
rotating case for a single pass below 1000 km. Similarly, a constantA
is computed as the mean of theA for the rotating case. The mass for
the models is assumed to be 1000 kg. The BCs computed for all the
shape models are given in Table 3.
Figure 11b shows the error in orbit caused by not accounting for

the attitude variations and using a constant BC. The orbit is
propagated using the true initial state for quaternion and rotational
rates, accounting for two-body dynamics, spherical harmonics up to
order 6 (J1–J6), and atmospheric drag. Results show that, if not
properly accounted for, the attitude variations can lead to a
maximum orbit prediction error of more than 20 km after just ten
brief passes through the lower atmosphere or 120 h. Using a fitted
BC can result in an even larger maximum position error of about

35 km in the same amount of time. The error is zero until the first
pass through the atmosphere and grows every orbit, peaking to a
growing maximum value at perigee for each orbit. The position
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Fig. 8 NLSQ results for Falcon 9 rocket body model. Left: measured and estimated magnitude; right: residual.

Table 1 NLSQ estimates of the initial-state vector ((⋅) means that the
value is not computed.)

Falcon

Parameter True Round top Cylinder Atlas Three axis Two axis

q1 0.7041 0.7072 0.6955 0.7023 0.6956 0.6961
q2 0.0199 0.0378 0.0352 0.0521 −0.0959 0.1106
q3 0.0896 0.0698 0.0710 0.0560 0.2048 (⋅)
q4 0.7041 0.7025 0.7141 0.7077 0.6819 0.7094
ωrx , rad∕s 0.200 0.1985 0.1988 0.1976 0.1949 0.1889
ωry , rad∕s 0.0180 0.0271 0.0292 0.0369 −0.0483 0.0679
ωrz , rad∕s 0.0524 0.0531 0.0524 0.0521 0.0525 0.0525

Table 2 Estimates of the NLSQ initial-state variance

Falcon

Parameter Round top Cylinder Atlas Three axis Two axis

ξx, rad 0.0259 0.0205 0.0133 0.0031 0.0024
ξy, rad 0.0034 0.0031 0.0027 0.0021 0.0015
ξz, rad 0.0672 0.0610 0.0519 0.0315 (⋅)
ωrx , rad∕s 0.0016 0.0016 0.0018 0.0016 0.00012
ωry , rad∕s 0.0135 0.0122 0.0101 0.0061 0.00020
ωrz , rad∕s 0.0006 0.0005 0.0002 0.0001 0.00002
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errors are computed as the magnitude of the difference in the

position vectors at the same time along the orbits with respect to the

rotating case.

Figure 12 shows the comparison of orbit errors for all the different

shape models. It is seen that for all shape models the errors for the

case of a constant BC are significantly higher than that of a
nonrotating RSO. In both cases, the errors are largest for the Atlas

among all shape models due to the largest BC as given in Table 3.
Themaximum error for Atlas using a constant BC can reach upward

of 100 km after just ten orbits and upward of 60 km for the
nonrotating scenario. The round top, Falcon, and cylinder models

show errors in the decreasing order behind theAtlas model based on

the BC values in Table 3. The errors show the importance of the
proposed method for estimating attitude in improving orbit and

reentry predictions.
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Fig. 9 Comparison of CD for different shape models. Left: comparison of CD below 1000 km; right: closeup of CD variations.
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Fig. 10 Sampling for NLSQ initial-state guess. Left: propagation of sigma points; right: Monte Carlo.

Table 3 Estimates of ballistic coefficients for the
different shape models

Parameter Round top Cylinder Atlas Falcon

Mean CD 2.498 2.555 2.531 2.577
Mean A, m2 18.953 14.703 22.020 16.826
BC, m2∕kg 0.0473 0.0376 0.0557 0.0434
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Fig. 11 Effect of attitude on orbit prediction for Falcon. Left: CD below 1000 km; right: position error.
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VIII. Conclusions

In this paper, a nonlinear least-squares estimation scheme using

light-curve measurements was presented and used to estimate the

attitude and angular velocityof a resident space objectwith an assumed

shape. This paper focused on rocket bodies with a perigee altitude

lower than 300 km. The shape models consisted of triangular facets to

allow for the modeling of complex rocket body shapes. Four different

rocket body models were used: a simple cylinder, a simple cylinder

with a rounded top, a Falcon 9 upper stage, and an Atlas upper stage.

The light-curve model used was based on the Ashikhmin–Shirley

BRDF and showed good performance for the simulated examples.
The estimated orientation trajectories were used to estimate the

drag coefficient of the resident space object below 1000 km altitude

over several orbits. Orbits are propagated with drag coefficients

computed using the attitude variations, a constant attitude, and a

constant drag coefficient to represent the typically used fitted ballistic

coefficients. Results show that the orbit error can be on the order of

tens of kilometers after just ten passes below 1000 km for a highly

elliptical orbit. The errors highlight the importance of attitude

knowledge in accurately predicting the orbits for collision avoidance

and the significance of the method developed for its estimation.
As has been shown in this paper, the knowledge of attitude

variations can significantly improve estimates of the drag

acceleration that can in turn improve the correction estimated for

the reference density model. This idea will be explored as part of

future work. In addition, the more accurate expected estimates of the

density derived from orbital decay of RSOs using the orientation

trajectories can also provide data for improved dynamic calibration of

the atmosphere, as in the case of HASDM. This idea will also be

explored as part of future work.

Appendix: Attitude Dynamics Model

The attitude matrix in terms of the quaternion is given as

A�q� � ΞT�q�Ψ�q� (A1)

where

Ξ�q� ≡
�
q4I3×3 � �ϱ×�

−ϱT

�
(A2a)

Ψ�q� ≡
�
q4I3×3 − �ϱ×�

−ϱT

�
(A2b)

with

�a×� ≡
2
4 0 −a3 a2

a3 0 −a1
−a2 a1 0

3
5 (A3)

for any general 3 × 1 vector a defined such that �a×�b � a × b. This
representation is constrained since the quaternion is of unit length and
therefore qTq � 1. The kinematics dynamics are given by a first-
order differential equation as

_q � 1

2
Ξ�q�ωr (A4a)

_ωB
rB∕I � J−1

�
−
h
ωB

rB∕I×
i
JωB

rB∕I

	
(A4b)

where J is the inertia matrix.
Under the small angle approximation, the rotational dynamics can

be linearized by considering the first-order terms as [18]

δ_ξ � −
h
ω̂B

rB∕I×
i
δξ� ωB

rB∕I (A5a)

_ωB
rB∕I � J−1

�
−
h
Jω̂B

rB∕I×
i
�

h
ω̂B

rB∕I×
i
J
	
ωB

rB∕I (A5b)

where ω̂B
rB∕I is the true angular velocity aboutwhich the equations are

linearized. The state transition matrix for a time step of Δt can be
calculated using the previously mentioned linearized equations with
amatrix exponential. Equation (A5) can then bewritten in state space
form as"

δ_ξ
_ωB
rB∕I

#
�

"
−�ω̂B

rB∕I×� I3×3
03×3 �−�Jω̂B

rB∕I×� � �ω̂B
rB∕I×�J�

#
|




































{z




































}

F

�
δξ

ωB
rB∕I

�

(A6)

The linearized dynamics matrix F computed at the time of each
measurement is used to calculate the state transition matrix between
tk and tk−1. In general, F can vary with time between tk−1 and tk;
however, it is assumed constant in this paper since the time stepΔt is
expected to be small. Therefore, the state transition matrix for the
dynamic state can be given as

Φ�tk; tk−1� � expfF�tk−1�Δtg (A7)

whereF�tk−1� is linearized about the timeof the previousmeasurement
allowing for the state transition matrix to be calculated as

Φ�tk; t0� �
Yk
i�1

Φ�ti; ti−1� (A8)
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Fig. 12 Orbit propagation errors for all shape models. Left: nonrotational; right: constant BC.
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