
Space Weather

A New Transformative Framework for Data
Assimilation and Calibration of Physical
Ionosphere-Thermosphere Models

Piyush M. Mehta1 and Richard Linares2

1Department of Mechanical and Aerospace Engineering, Statler College of Engineering and Mineral Resources, West
Virginia University, Morgantown, WV, USA, 2Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA, USA

Abstract Accurate specification and prediction of the ionosphere-thermosphere environment,
driven by external forcing, is crucial to the space community. In this work, we present a new transformative
framework for data assimilation and calibration of the physical ionosphere-thermosphere models.
The framework has two main components: (i) the development of a quasi-physical dynamic
reduced-order model (ROM) that uses a linear approximation of the underlying dynamics and effect
of the drivers, and (ii) data assimilation and calibration of the ROM through estimation of the ROM
coefficients that represent the model parameters. A reduced-order surrogate for thermospheric
mass density from the Thermosphere-Ionosphere-Electrodynamics General Circulation Model
(TIE-GCM) was developed in previous work. This work concentrates on the second component of
the framework—data assimilation and calibration of the TIE-GCM ROM. The new framework has
two major advantages: (i) a dynamic ROM that combines the speed of empirical models for real-time
capabilities with the predictive capabilities of physical models, which has the potential to facilitate improved
uncertainty quantification using large ensembles, and (ii) estimation of model parameters rather than the
driver(s)/input(s), which allows calibration of the model, thus avoiding degradation of model performance
in the absence of continuous data. We demonstrate and validate the framework using simulated and real
measurement scenarios. The simulated case uses Mass Spectrometer and Incoherent Scatter model output
as measurements, while the real data case uses accelerometer-derived density estimates from CHAllenging
Minisatellite Payload and Gravity Field and Steady-State Ocean Circulation Explorer. The framework
is a first of its kind, simple yet robust and accurate method with high potential for providing real-time
operational updates to the state of the upper atmosphere in the context of drag modeling for space
situational awareness and space traffic management.

1. Introduction

The upper atmosphere, comprising the ionosphere-thermosphere (IT), is a highly dynamic environment that
readily undergoes variations that can be significant under certain conditions. Accurate modeling and predic-
tion of the IT variations, caused by space weather events (SWEs), are crucial for safeguarding the space assets
that serve various communities. Ionospheric enhancements caused by SWEs can hinder telecommunications
while also affecting systems on-board the assets directly through surface charging and other phenomenon.
Thermospheric mass density enhancements caused by SWEs have a direct and strong impact on the drag force
acting on the space assets and other objects in low Earth orbit (LEO). Existing models for the thermosphere
can be highly biased or erroneous, especially for forecasts, making drag the largest source of uncertainty in
our ability to accurately predict the state of the objects in LEO. With the recent increase in space traffic (Radtke
et al., 2017), predicting the state of the objects in LEO becomes critical for collision avoidance in the context
of space situational awareness (SSA) and space traffic management (STM).

Empirical models of the thermosphere (Barlier et al., 1978; Berger et al., 1998; Bowman, Tobiska, Marcos,
Huang, et al., 2008; Bowman, Tobiska, Marcos, & Valladares, 2008; Bruinsma et al., 2003, 2012, 2015; Hedin,
1983, 1987; Hedin et al., 1977; Jacchia, 1970; Picone et al., 2002), developed since early in the space age
using sparse measurements, adopt a climatological approach to model the variations of the thermosphere.
These models capture the behavior in an average sense using low-order, parameterized mathematical for-
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mulations tuned to observations. A major advantage of the empirical models is that they are fast to evaluate,
making them ideal for drag and SSA/STM applications. The current state of practice employed by the Joint
Space Operations Center under the direction of the U.S. Air Force Space Command is an operational assim-
ilative empirical model that makes dynamic adjustments based on recent measurements of the state of the
thermosphere (Storz et al., 2005) but lacks in its ability for providing accurate forecasts.

The upper atmosphere is a large-scale nonlinear physical dynamical system with exogenous inputs, includ-
ing from the Sun, which is its strongest driver. The first principles based physical models of the IT carry
good potential for forecast; however, realizing that potential requires significant advances in data assimilation
methods. Data assimilation is the process of fusing observational data into numerical models to reduce uncer-
tainty in the model forecast. Data assimilation is required for physical models due to the imperfect nature of
the dynamics embedded in them that allows empirical models to consistently outperform them in terms of
accuracy (Shim et al., 2014).

Over the last decade or two, significant advances have been made in development of data assimilation meth-
ods with IT models for neutral density and drag applications. The said methods have been successful in
achieving better agreement between the measurements and model but lack in consistently providing now-
casts and forecasts that can compete with current state of practice (Sutton, 2018)—the High Accuracy Satellite
Drag Model (Storz et al., 2005). Most methods for data assimilation with physical models either achieve this by
estimating the state, the driver(s), or some combination of the two (Codrescu et al., 2004, 2018; Fuller-Rowell
et al., 2004; Godinez et al., 2015; Matsuo & Knipp, 2013; Matsuo et al., 2012, 2013; Minter et al., 2004; Morozov
et al., 2013; Murray et al., 2015; Sutton, 2018). The state can either be the parameter of interest (model out-
put) or model parameters that relate the output to the input. Because physical models solve the discretized
fluid equations over a volumetric grid, the full state can be rather large in size (over a million estimated
parameters). Traditional data assimilation methods, based on the Ensemble Kalman filter, estimate both the
input drivers as well internal state of the model because the variational timescales in the thermosphere can
cause a lag in the filter. The large state vector combined with the large number of ensembles needed to
obtain statistically significant results makes the approach computationally expensive. Recent approach by
Sutton (2018) uses predefined model variation runs in lieu of large ensembles combined with an iterative
approach to prevent filter lag in estimation of the dominant drivers (F10.7 and Kp) for a self-consistent calibra-
tion of the model. The approach, however, remains computationally expensive requiring dedicated parallel
resources for real-time application, but more importantly, the estimation can result in physically unrealistic
values for the driver(s) as previous methods that estimate them. In addition, the method of estimating driver(s)
is not robust against a break in continuous data stream as the model forecast falls back to the original evolu-
tion of the model and is currently an open question in the community (H. Godinez, private communication,
February 12, 2018). Moreover, with the final goal of accurate uncertainty quantification for the computa-
tion of collision probabilities, the current methods lie somewhere between highly computationally expensive
to intractable.

This paper demonstrates a new two-part transformative framework for data assimilation and calibration of
physical IT models with the potential for providing accurate density forecasts and uncertainty quantification.
The framework has two main components: (i) development of a quasi-physical reduced-order model (ROM)
and (ii) calibration of the ROM through data assimilation. Previous work presented the development of a new
method, Hermitian Space-Dynamic Mode Decomposition with control (HS-DMDc), towards achieving model
order reduction for large-scale dynamical IT models (Mehta, Linares, & Sutton, 2018). The new method carries
the same motivation and goals as previous work using Proper Orthogonal Decomposition (POD) or Empirical
Orthogonal Functions (EOFs; e.g., Matsuo et al., 2012; Mehta & Linares, 2017) but uses a dynamic systems for-
mulation that inherently facilities prediction. The ROM provides a linearized representation of the underlying
model dynamics. In this paper, we demonstrate a simple yet robust and effective approach for estimating and
calibrating the state of the thermosphere using the ROM with data assimilation. The approach uses a standard
Kalman filter to estimate a reduced state that represents the model parameters rather than the driver(s), which
avoids degradation of the model performance in the absence of measurement data. In addition, the ROM
can provide a 24-hr forecast in a fraction of a second on a standard desktop platform. In essence, the frame-
work combines the best of both empirical (low-cost) and physical (predictive capabilities) models and can
also facilitate accurate uncertainty quantification with large ensemble simulations (subject of future work).
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The paper is organized as follows: section 2 describes the process of developing a quasi-physical dynamic
ROM using discrete time simulation output from physical IT systems. Section 3 describes the conversion of
the ROM between discrete and continuous time, essential for assimilating data using a Kalman filter in the
new framework. Section 4 describes the accelerometer-derived density measurements used in this work for
data assimilation. Section 5 gives a brief overview of the very popular Kalman filter including the Bayesian
Optimization (BO) approach used to optimize the filter in this work. Section 6 answers the question of observ-
ability, and section 7 presents and discusses the results of data assimilation. Finally, section 8 concludes
the paper.

2. Model Order Reduction

The main idea behind reduced-order modeling is to reduce the complexity of a physical model by reducing
the state space dimension or degrees of freedom of the system. POD (Lumley, 1967) or EOF is the most com-
monly used approach for model order reduction; however, one of its major limitation is that the formulation
does not allow prediction. POD reconstructs the state (x) using a small number (r) of spatial structures or
modes (𝝓) combined with the corresponding time-dependent coefficients (ci) as given below:

x̃(s, t) = x(s, t) − x̄(s) ≈
r∑

i=1

ci(t)𝝓i(s) (1)

In the equation above, the decomposition is performed after taking away the mean; therefore, the first r
modes capture a significant fraction of the variance. If the decomposition is performed without taking away
the mean, as in the present paper, the first r modes capture a large fraction of the energy with the first mode
containing a strong mean component. For more details the reader is directed to Mehta and Linares (2017) and
Mehta, Linares, and Sutton (2018). The POD method can provide insights into the underlying dynamics of the
system through the spatial structures or modes and the temporal variation of the corresponding coefficients
but cannot model its evolution for prediction. Several studies have attempted to overcome this limitation
using surrogate or parameterized models (e.g., Mehta & Linares, 2017); however, the upper atmosphere is a
physical dynamical system and should be appropriately modeled as such.

Dynamic Model Decomposition (DMD), developed by Schmid (2010), uses a dynamic systems formulation
that inherently enables prediction. The method derives an approximation for the dynamic matrix, A, of a best
fit linear system that can be used for prediction in discrete time as

xk+1 = Axk (2)

Proctor et al. (2016) extended DMD for application to systems with exogenous inputs

xk+1 = Axk + Buk (3)

where B is the input matrix. Because computing and storing the dynamic and input matrices for a large state
(x ≫ 1) can be intractable, a reduced-order representation of the system is achieved through a similarity
transform that projects the state, and the dynamic and input matrices onto a reduced space given by the POD
modes as discussed in detail later in the section.

Mehta, Linares, and Sutton (2018) used the Hermitian Space to extend application to large-scale systems
such as the upper atmosphere; they call the method HS-DMDc. They developed a ROM using simulation out-
put from National Center for Atmospheric Research’s TIE-GCM (Thermosphere-Ionosphere-Electrodynamics
General Circulation Model; Qian et al., 2014) spanning over a full solar cycle (12 years). The reader is referred
to Mehta, Linares, and Sutton (2018) for detailed information on ROM for IT models. In this paper, we provide
basic knowledge relevant to the process of data assimilation.

Large-scale physical models of the IT solve discretized fluid equations over a grid on interest. In discrete time,
the evolution of a linear dynamical system can be given as in equation (3), where A ∈ R

n×n is the dynamic
matrix and B ∈ R

n×p is the input matrix in discrete time, x ∈ R
n×1 is the full state, u ∈ R

p×1 is the input, and k is
the time index. HS-DMDc uses time-resolved snapshots, xk , from a physical system (in this case TIE-GCM sim-
ulation output) to extract the best fit estimate for A and B. Modeling the nonlinear dynamics with a reduced
form will be the subject of future work. In order for the derived model to be applicable across the full range
of input conditions, the ROM was derived using 12 years of TIE-GCM simulations spanning a full solar cycle.
Because 12 years, worth of simulation output or snapshots results in a large data set, the innovation behind
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HS-DMDc is to reduce the problem to the Hermitian Space (computing the inverse of a matrix X ∈ R
n×(m−1),

m being the number of snapshots, is reduced to taking an inverse of XXT ∈ R
n×n).

HS-DMDc uses snapshot matrices that are a collection of the time-resolved output from TIE-GCM to estimate
the dynamic and input matrices. The three-dimensional grid outputs over time are unfolded into column
vectors and stacked together. The input matrix is an assimilation of the inputs to the system. In this case, the
inputs used are the solar activity proxy (F10.7), geomagnetic proxy (Kp), universal time (UT) and day of the year.

X1 =
⎡⎢⎢⎣
| | |
x1 x2 · · · xm−1| | |

⎤⎥⎥⎦ X2 =
⎡⎢⎢⎣
| | |
x2 x3 · · · xm| | |

⎤⎥⎥⎦ 𝚼 =
⎡⎢⎢⎣
| | |
u1 u2 · · · um−1| | |

⎤⎥⎥⎦ (4)

The snapshot and input matrices are related by Equation (3) such that

X2 = AX1 + B𝚼 (5)

The goal now is to estimate A and B. In order to achieve this, the above equation is modified such that

X2 = Z𝚿 (6)

where Z and 𝚿 are the augmented operator and data matrices, respectively.

Z ≜
[

A B
]

and 𝚿 ≜

[
X1

𝚼

]
(7)

The estimate for Z, and hence A and B, is achieved with a Moore-Penrose pseudoinverse of 𝚿 such that
Z = X2𝚿†.

Because the state size, n, can also be very large making computation and storage of the dynamic and input
matrices intractable, a reduced state is used to model the evolution of the dynamical system.

zk+1 = Arzk + Bruk + wk (8)

where Ar ∈ R
r×r is the reduced dynamic matrix and Br ∈ R

r×p is the reduced input matrix in discrete time,
z ∈ R

r×1 is the reduced state, and wk is the process noise that accounts for the unmodeled effects and the
ROM truncation error. The state reduction is achieved using a similarity transform zk = U†

r xk = UT
r xk , where

Ur are the first r POD modes. The steps involved in HS-DMDc are summarized below. The data assimilation
process presented in this work will estimate the reduced state, z, that represents the coefficients of the POD
modes and can be thought of as model parameters that relate the model input(s) to the output(s). It can also
provide insights into the model dynamics and will be explored in future work.
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3. Discrete to Continuous Time

The new framework uses a sequential (Kalman) filter for data assimilation that requires propagating the state
to the next measurement time, which most likely will not be uniformly distributed and/or with a snapshot
resolution used to derive the dynamic and input matrices for the ROM. Therefore, the dynamic and input
matrices need to be first converted to continuous time and then back to time for next measurement, tk . This
can be achieved using the following relation (DeCarlo, 1989):

[
Ac Bc

0 0

]
= log

([
Ad Bd

0 I

])
∕T (14)

where [Ac,Ad] are the dynamic matrices and [Bc,Bd] are the input matrices in continuous and discrete time,
respectively, and T is the sample time (snapshot resolution when converting from discrete to continuous
time and the time to next measurement, tk , when converting back from continuous to discrete time). This
represents another major advantage of the new framework where the time step of model evolution can be
readily adjusted.

4. Measurements

Because the TIE-GCM ROM used for this demonstration is restricted to altitudes between 100 and 450 km
for reasons discussed in Mehta, Linares, and Sutton (2018), we cannot use the pair of CHAMP (CHAllenging
Minisatellite Payload; Reigber et al., 2002) and GRACE (Gravity Recovery and Climate Experiment; Tapley
et al., 2004) accelerometer-derived high-accuracy measurements of thermospheric mass density. CHAMP and
GRACE accelerometer-derived mass density estimates have been the workhorse for a lot of work that has
been done in the area; therefore, we use CHAMP-derived measurements in conjunction with density esti-
mates derived from accelerometer measurements on board the GOCE (Gravity Field and Steady-State Ocean
Circulation Explorer) satellite (Drinkwater et al., 2003). We use the state-of-the-art CHAMP density estimates
from Mehta et al. (2017) and the latest GOCE data set from Doornbos et al. (2014). The simulated case uses
the Naval Research Laboratory’s MSIS (Mass Spectrometer and Incoherent Scatter) model (Picone et al., 2002)
output along CHAMP and GOCE satellites as measurements.

Because the existing models, empirical and physical, have the largest bias/difference with accelerometer-
derived densities at solar minimum and geomagnetically active conditions (Mehta et al., 2017), we choose
a representative day (of the year: 320) in November 2009 to demonstrate the new framework. This period is
also chosen because GOCE was launched in March 2009 and data for both CHAMP and GOCE are available.
CHAMP is in a nearly polar orbit at close to 320-km altitude on the day chosen for assimilation. GOCE is in a
Sun-synchronous orbit close to 250 km in altitude. Figure 1 shows the orbital elements for the two satellites
on the day of assimilation. The two orbits are significantly different on the day of the assimilation, which vali-
dates the performance of the assimilation on a global scale. We choose a day with low geomagnetic activity
as the current version of the TIE-GCM ROM is not applicable during active storm periods because of the linear
approximation. This limitation is discussed in detail in Mehta et al. (2017). Demonstration for active time peri-
ods will be subject of future work. Both CHAMP- and GOCE-derived density estimates have a time resolution
of 10 s. As with most of the previous work with data assimilation of IT models, we perform intercalibration of
the two data sets with respect to TIE-GCM. We divide the CHAMP data with a daily factor of 1.35. For the sim-
ulated case, the MSIS CHAMP densities are scaled by a daily factor of 1.21. Also, as in previous work by the
authors, development of the TIE-GCM ROM and assimilation of CHAMP densities is performed in the log scale
(Emmert & Picone, 2010).

5. Kalman Filter

The sequential (Kalman) Filter, henceforth referred to in this work as KF, has been the workhorse for state
estimation and prediction using discrete time linear systems since its inception at the beginning of the space
age (Kalman, 1960). The KF is a linear optimal state estimation method that uses statistical (Bayesian) inference
based on the Bayes’ theorem (Bayes, 1763). Since the KF is one of the most commonly used tools in estimation
theory, we will only provide a basic description with equations. There is a significant amount of literature
available to the reader on Bayes’ theorem, Bayesian inference, and KF should they be interested.
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Figure 1. CHAllenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE) orbital elements on day 320 of year 2009.

The KF has two major steps: (i) time update and (ii) measurement update, as outlined in the algorithm below.
The time update projects the current state and covariance estimate forward through the model to the time
of next measurement. The projected state (x−

k ) and covariance (P−
k ), signified by the negative superscript, rep-

resent the a priori knowledge about the state of the system. The process noise (Q) in equation (17) accounts
for the imperfect model dynamics. The a priori covariance, the measurement variance (Rk), and the obser-
vation matrix (Hk) are combined to compute the Kalman Gain (Kk) as given in equation (18). We generate a
Monte Carlo estimate for Rk in the log scale based on the uncertainties associated with the measurements
(𝜌, mass density) by sampling the Gaussian 100 times and recomputing the variance using the samples such
that Rk ≈ Var

[
log(𝜌k + Δ𝜌k ∗ randn(100))

]
. The observation matrix HT

k ∈ R
r×1, which relates the measure-

ments (ỹk) to the state (zk) by mapping it onto the measurement space, is in this case a vector made up of the
interpolated values at the measurement location of the first r POD modes such that ỹk = Hkzk + vk , where
vk is the measurement error. In simple terms, the Kalman Gain reflects the weights or confidence for the a
priori estimate against the measurement. The Kalman Gain is then used to update the a priori state and covari-
ance estimate as given in equations (19) and (20). The updated state (x+

k ) and covariance (P+
k ), signified by the

positive superscript, represent the posteriori knowledge about the state of the system achieved after data
assimilation. The posteriori estimates are fed back into steps 1 and 2 until all the measurements have been
processed. In the absence of measurements, the state and covariance are propagated through the model until
a measurement is available.

5.1. Bayesian Optimization
A well-known challenge when applying the Kalman filter is the lack of knowledge on the process noise
statistics. This work uses the process noise model to account for unmodeled effects that are not captured
by TIE-GCM and errors induced in the model reduction process. Tuning the Kalman filter includes estimat-
ing statistics for process and measurement noise. However, we assume that the measurement noise values
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reported for the data set used are accurate. Therefore, we only tune the process noise covariance. In addition,
we tune the initial covariance (P0) as it is usually difficult to produce a good estimate for it.

BO is a method for blackbox optimization of stochastic cost function (Mockus, 1975). We use BO because our
cost is a complex function of the process noise (Q) and stochastic due to the measurement noise (R). We use
the cost function for maximum likelihood estimation given as

min
q

L(ỹ|q) = N∑
k=1

log
(

det
(

Rk + HkP+
k HT

k

))
+
(

ŷk − ỹk

)T (
Rk + HkP+

k HT
k

)−1 (
ŷk − ỹk

)
(15)

where ŷk is the estimated density and Q = diag(q), q ∈ R
r×1. We use the bayesopt function built into MATLAB

for current work. The range of optimizable process noise Q is set at [1e−6,1e−1] . Because we estimate the
reduced state that represents the POD coefficients, the range of optimizable initial covariance P0 is set at
[1e1,1e2]. The number of iterations is set at the default of 30. The optimized process noise matrix Q0 and initial
covariance matrix P0 are then used to initialize the KF.

6. Observability Analysis

The new framework begs two different questions on observability: (i) Is there enough data available to
derive/extract the POD modes for model order reduction? and (ii) can the reduced state, z, be estimated using
discrete point measurements of density along an orbit? The first question is easy to answer because unlike
some previous works where the POD modes or EOFs are derived from discrete measurements of density along
an orbit (e.g., Matsuo & Forbes, 2010), we use model simulation output that provides complete global spatial
coverage to derive the POD modes. In addition, simulation output over a full solar cycle is used which ensures
sufficient temporal coverage.

For linear time-invariant systems, such as the ROM formulation in equation (3), answer to the second question
can be provided using the observability matrix

k = Hr,kAk
r =⇒  =

⎡⎢⎢⎢⎢⎢⎣

H0

H1A

H2A2

⋮

⎤⎥⎥⎥⎥⎥⎦
(21)

The matrix is populated at each time for the location at which the observation is made. The state z is consid-
ered to be observable when the observability matrix is full rank or rank() = r. In addition, the observability
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Figure 2. Rank and condition number of the observability matrix when
assimilating CHAllenging Minisatellite Payload measurements with TIE-GCM
ROM on day 320 of year 2009.

matrix can artificially become full rank because of noise. Therefore, we also
compute the condition number of  to confirm that this is not the case.
A relatively large condition number suggests that the observability matrix
is not full rank due to of noise. Figure 2 shows the rank and condition
number for the real measurement demonstration case presented in this
work assimilating a full days’ worth of measurements along the CHAMP
orbit for r = 10. The figure shows that the observability matrix becomes
full rank very quickly. The condition number rises to very large values ini-
tially (large values correspond to ill-conditioned problem) and also falls
back to a well-conditioned state quickly after full rank is achieved. This
ill-conditioned period corresponds to the convergence dynamics of the
Kalman filter.

7. Results and Discussion

We demonstrate the new framework by assimilating simulated and real
measurements on day 320 of year 2009. We assimilate measurements
along CHAMP orbit and validate with an independent set of measure-
ments along the orbit of GOCE. The discrete time reduced-order dynamic
and input matrices are converted to continuous time using the relation
in equation (14). Since both the ingested and validation data sets have a
time resolution of 10 s, we convert the dynamic and input matrices back
to discrete time for a time step of 10 s.

7.1. Simulated Measurements
The simulated case uses MSIS model output along CHAMP and GOCE orbits on day 320 of year 2009. The
CHAMP and GOCE MSIS densities are intercalibrated by scaling CHAMP densities using a daily value of 1.21.
For the simulated case, we assume and apply the uncertainties associated with the real measurements to
the simulated CHAMP and GOCE MSIS densities. The authors want to point out that the root-mean-square
(rms) of uncertainties provided with the GOCE data set was on the order of 1%, which is too small even
for the best drag coefficient and gas surface interaction models (Mehta, Walker, McLaughlin, & Koller, 2014).
Therefore, we multiply the uncertainty by a factor of 5 to bring it to more reasonable values. Another major
advantage of the new framework is that the ROM can be initialized using output from any model. Therefore,

Figure 3. (top) Red: MSIS simulated measurements along CHAMP orbit on day 320 for year 2009. Blue: TIE-GCM
densities along CHAMP orbit. Green: KF assimilated ROM density. Magenta: Prediction with ROM after 12 hrs
of data assimilation. (bottom) Simulated MSIS (red), KF estimated (green), and ROM-predicted (magenta)
densities with KF estimated 1𝜎 uncertainties along CHAMP orbit. MSIS = Mass Spectrometer and Incoherent
Scatter; TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model; KF = Kalman filter;
ROM = reduced-order model; CHAMP = CHAllenging Minisatellite Payload.
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Figure 4. (top) Validation of the data assimilation process using MSIS simulated independent measurements (in red)
along GOCE orbit on day 320 of year 2009. Blue: TIE-GCM densities along GOCE orbit. Green: KF assimilated ROM
density. (bottom) Simulated MSIS- (red) and KF estimated (green) densities with KF estimated 1𝜎 uncertainties along
GOCE orbit. MSIS = Mass Spectrometer and Incoherent Scatter; TIE-GCM = Thermosphere-Ionosphere-Electrodynamics
General Circulation Model; KF = Kalman filter; GOCE = Gravity Field and Steady-State Ocean Circulation Explorer.

Figure 5. (top) Black: CHAMP accelerometer-derived density estimates. Red: MSIS model output along CHAMP orbit.
Blue: TIE-GCM model output along CHAMP orbit. Green: CHAMP assimilated ROM densities on day 320 for year 2009.
Magenta: prediction with ROM after 12 hrs of data assimilation. (bottom) CHAMP measurements (black), KF estimated
(green), and ROM predicted (magenta) densities with KF estimated 1𝜎 uncertainties along CHAMP orbit. MSIS = Mass
Spectrometer and Incoherent Scatter; TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model;
KF = Kalman filter; ROM = reduced-order model; CHAMP = CHAllenging Minisatellite Payload.

Table 1
RMS Difference for Real Measurements Case in Kilograms per Cubic Meters

Model → Assimilated

Satellite ↓ MSIS TIE-GCM MSIS initialized TIE-GCM initialized

CHAMP 2.91e−12 1.02e−12 1.34e−13 1.30e−13

GOCE 7.24e−12 4.62e−12 2.18e−12 2.05e−12

Note. RMS = Root-Mean-Square; MSIS = Mass Spectrometer and Incoherent Scatter;
TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model;
CHAMP = CHAllenging Minisatellite Payload. GOCE = Gravity Field and Steady-State
Ocean Circulation Explorer.
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Figure 6. Red: POD coefficients for the first 10 modes computed by projecting MSIS simulation output onto the POD
modes Ur on day 320 of year 2009. Blue: POD coefficients for TIE-GCM. Green: KF estimated reduced-order state z with
data assimilation. Black: KF estimated 1𝜎 uncertainty for the reduced-order state. MSIS = Mass Spectrometer and
Incoherent Scatter; TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model; KF = Kalman filter;
POD = Proper Orthogonal Decomposition.

TIE-GCM simulations would not be required in case of an interruption in operations. The model can easily be
reinitialized using output from empirical models. For demonstration with simulated measurements, the filter
is initialized with TIE-GCM simulation output. The global density (full state) from TIE-GCM is used to compute
the reduced state as z0 = Ux0.

Several different combinations of [r̂, r] were attempted with the combination [10,10] providing the best per-
formance. This combination is a trade-off between accuracy and overfitting the measurements. Because MSIS
is an averaged representation of the variations, a few modes (r) are enough to capture the dominant varia-
tions. Figure 3 shows the effectiveness of the data assimilation process through the new framework. The top
panel shows the MSIS density along the CHAMP orbit (simulated measurements) in red, TIE-GCM densities
along CHAMP orbit in blue, and the assimilated densities in green. We run an additional ensemble that sees
data assimilation for the first 12 hrs but is then allowed to evolve under the dynamics captured by the ROM.
This prediction is shown in magenta. It is observed that the approach tracks the simulated measurements very
well and possesses very good potential for providing accurate forecasts. The forecast is expected to accumu-
late errors faster in time because of the low truncation order for both r̂ and r needed to avoid overfitting in this
particular case (Mehta, Linares, and Sutton, 2018). The assimilation process in this case is mostly correcting
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Figure 7. (top) Validation of CHAllenging Minisatellite Payload data assimilation using independent measurements
along GOCE orbit on day 320 of year 2009. Black: GOCE measurements. Red: MSIS output. Blue: TIE-GCM output. Green:
KF estimates densities along GOCE orbit. (bottom) GOCE measurements (black) and KF estimated density and 1𝜎
uncertainty along GOCE orbit. GOCE = Gravity Field and Steady-State Ocean Circulation Explorer; MSIS = Mass
Spectrometer and Incoherent Scatter; TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model;
KF = Kalman filter.

for the difference in the day and night density magnitudes. It seems that MSIS overpredicts daytime densities,
and since the model evolves through TIE-GCM dynamics, the prediction (magenta) attempts to match the
magnitude variations but falls short. The bottom panel shows the simulated MSIS measurements (red) and
the estimated (green) and predicted (magenta) densities with 1𝜎 covariance bounds estimated as part of the
data assimilation. The uncertainty bounds are computed by projecting the state covariance of equation (20)
onto the measurement space

Pyy
k =

(
HkPkHT

k + Rk

)0.5
(22)

As seen, the measured (simulated) and predicted densities lie within the estimated 1𝜎 uncertainty bounds.
The full day pre-assimilation rms difference between TIE-GCM and MSIS (simulated measurements) densities
along CHAMP orbit is 1.269e−12 kg/m3, while post-assimilation the rms difference is 1.139e−13 kg/m3.

Figure 4 shows the validation of the assimilation process using an independent set of simulated measure-
ments (MSIS) along the GOCE orbit. The validation confirms that the reduced state, which provides global
calibration, can be estimated using discrete measurements along a single orbit. The ROM is tuned with simu-
lated MSIS density along the CHAMP orbit, with the corrected state accurately predicting the simulated MSIS
density along GOCE orbit. Results show that the approach can self-consistently calibrate the model while
preserving the underlying dynamics. The bottom panel shows that the simulated GOCE measurements lie
within the estimated 1𝜎 bounds. The pre-assimilation rms difference between TIE-GCM and MSIS (simulated
measurements) densities along GOCE orbit is 3.078e−12 kg/m3, while post-assimilation the rms difference is
2.137e−12 kg/m3.

7.2. Real Measurements
The real data demonstration uses CHAMP (Mehta et al., 2017) and GOCE (Doornbos et al., 2014) accelerometer-
derived densities on day 320 of year 2009. The CHAMP and GOCE densities are intercalibrated by scaling
CHAMP densities using a daily value of 1.35. The uncertainties for GOCE are again scaled by a factor of 5 as dis-
cussed previously. Two different assimilation cycles are performed, one initialized with MSIS while the other
initialized with TIE-GCM. Again, several different combinations of [r̂, r] are attempted with [20,10] providing
the best results.

Figure 5 shows the assimilation results for the filter initialized with MSIS. Note: All the results shown in Figures 5
through 10 correspond to the case where the ROM is initialized with MSIS. Figures for TIE-GCM initialization
are not shown to save on space. The top panel shows the CHAMP measurements in black, MSIS in red,
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Figure 8. 1𝜎 error prediction at mean CHAMP altitude after assimilation of
all CHAMP data on day 320 of year 2009. Red: Satellite location at the
current time. Green: back propagated CHAMP orbit from current location.
CHAMP = CHAllenging Minisatellite Payload.

TIE-GCM in blue, and the assimilated densities in green. The additional
prediction ensemble is shown in magenta. Just as in the simulated case,
the approach not only tracks the measurements very well but exhibits
very good potential for providing accurate forecasts. In this case, the
approach corrects for the both day-night magnitude difference and for
the absolute scale biases, which represents the major component of the
errors due to drag. The bottom panel shows the measurements (black),
and the estimated (green) and the predicted (magenta) densities with 1𝜎
covariance bounds estimated as part of the data assimilation. The uncer-
tainty bounds are again computed by projecting the state covariance onto
the measurement space. As seen, the measurements, and the estimated
and predicted densities lie within the estimated 1𝜎 uncertainties bounds.
The pre-assimilation and post-assimilation rms difference values are given
in Table 1.

Figure 6 shows the estimated reduced-order state and uncertainty with
data assimilation. As previously discussed, the reduced state represents
the POD coefficients for the first r modes used for order reduction. We
also show the POD coefficients for MSIS and TIE-GCM obtained by project-
ing the simulation output for the day onto the POD modes. The first two
modes correspond to absolute scale correction (scaling with solar activity),
while others seem to represent variations on the different timescales.

Figure 7 shows the validation of the data assimilation using an independent data set of GOCE accelerometer-
derived mass density. The validation again confirms that the reduced state, which provides global calibra-
tion, can be estimated using discrete measurements along a single orbit. The ROM is tuned with CHAMP
densities, with the corrected state accurately predicting the density along GOCE orbit. Results show that the
approach can self-consistently calibrate the model while preserving the underlying dynamics. The bottom
panel shows that the GOCE measurements lie within the estimated 1𝜎 bounds about the estimated density.
The pre-assimilation and post-assimilation rms difference values are again provided in Table 1.

Table 1 also show the rms difference values for the real measurements case with initialization using TIE-GCM.
The results, as anticipated, are very similar with TIE-GCM initialization slightly outperforming the initializa-
tion with MSIS. If the user prefers to initialize with TIE-GCM, a POD representation of the TIE-GCM simulation
output using some form of regression can be used. Again, the TIE-GCM initialized results are not shown to
save on space.

Figure 9. 1𝜎 error prediction as a function of altitude after assimilation
of all CHAllenging Minisatellite Payload data on day 320 of year 2009.
Red: Satellite location at the current time.

Figures 8 and 9 show the global estimated covariance as a projection away
from the location of measurements. The green curve in Figure 8 represents
CHAMP orbit path with the red point corresponding to the current loca-
tion. The global uncertainty estimate is generated after all the data have
been assimilated. The global field is generated using equation (22), but
without the measurement error R and with H computed over the grid at
the mean altitude of CHAMP. As seen, the uncertainty is reduced in the
vicinity of the satellite path where the measurements are assimilated. The
uncertainty is the largest at the pole because of the singularity constraint.
The ROM captures the singularity constraint at the pole; however, assim-
ilating inconsistent (densities derived using different methods) data can
cause this constraint to not be satisfied, resulting in larger uncertainties
close to the poles. It may be possible to force this constraint in the ROM
framework and will be explored in future work. Figure 9 shows that the
error is minimum at the altitude of CHAMP but increases moving away
from the assimilated path. Even though ingesting data along an orbit path
can provide global estimates using the new framework, the global errors,
including close to the poles, can be further reduced with improved spatial
and temporal coverage of measurements.

MEHTA AND LINARES 1097



Space Weather 10.1029/2018SW001875

Figure 10. Comparison of mass density profiles at different altitudes from MSIS (left column) and TIE-GCM (middle column) against assimilated
ROM mass density profiles at the same altitudes (right column) on day 320 of year 2009. MSIS = Mass Spectrometer and Incoherent Scatter;
TIE-GCM = Thermosphere-Ionosphere-Electrodynamics General Circulation Model; ROM = reduced-order model.

Figure 10 shows the comparison of MSIS and TIE-GCM profiles against the ROM assimilated profiles at a series
of altitudes. As seen, except for the profile at 100 km, the MSIS and assimilated ROM profiles show similar
distributions. The difference at 100 km is due to the lower boundary effects. TIE-GCM and ROM have similar
profiles at the lower boundary as expected. The absolute scale of the assimilated densities suggests that MSIS
overpredicts the mass density across (almost) all altitudes during periods of low solar activity. While this is not
a new revelation, the new framework effectively calibrates existing physical models by adjusting the absolute
scale, which is a major driver of orbit prediction errors. Results also show that TIE-GCM slightly underpredicts
mass density below about 250 km (GOCE altitude) on the day while overpredicting at higher altitudes.

8. Conclusions

This paper has demonstrated a new, transformative framework for data assimilation and calibration of physical
IT models. A robust yet simple and effective approach for data assimilation has thus far eluded the commu-
nity. The new framework has two major components: (i) Model order reduction for a quasi-physical linear
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representation of the dynamics, and (ii) calibration of the ROM through data assimilation using a Kalman filter.
Development of a ROM was discussed in a previous paper. This paper demonstrates the second component.

The new framework combines the best of both empirical and physical models. The ROM reduces the cost of
model evaluation to the level of empirical models while inherently providing forecast/predictive capabilities.
Unlike large-scale physical models, the ROM formulation allows rapid modifications in the time step of model
evaluation or simulation with a negligible increase in the computational cost. This allows the model to be
easily projected to the time of next measurement. The ROM formulation also allows large ensemble runs of
the models for improved characterization and quantification of forecast uncertainty, a crucial requirement for
accurate computation of collision probabilities.

Data assimilation using the new framework also carries several advantages. The data assimilation process esti-
mates a reduced state that represents model parameters. Therefore, the data assimilation self-consistently
brings the model to agreement with measurements without modifying the model dynamics. Also, estimating
model parameters rather than the input(s)/driver(s) allows the model to be calibrated. The calibration avoids
degradation of model performance in the absence of measurement data. The authors note that because the
dynamics embedded in the ROM are derived from the TIE-GCM, the ROM carries the limitations of the TIE-GCM
in terms of unmodeled dynamics as well as the use of proxy inputs such as F10.7 and Kp. The assimilative
formulation can statistically account for the unmodeled dynamics through the process noise; however, accu-
rate forecasts will still depend on the accuracy of the space weather forecasts as well as the accuracy of its
representation by the proxies.

The data assimilation cycle and prediction for a full day takes only a fraction of a second using minimal compu-
tational resources. Therefore, the framework can be readily incorporated into operations. The demonstration
here is limited to non–storm time conditions. Future work will include development of ROMs that capture
the nonlinear dynamics and demonstration of the data assimilation and prediction during storm time. The
CHAMP and GOCE data used in this work are not considered operational data sets; therefore, future work will
demonstrate the effectiveness of the framework with operational data sets such as Two-Line Element sets for
well-behaved objects in LEO or other objects using recent advances for improved characterization of object
parameters that affect drag (e.g., Mehta, Linares, & Walker, 2018) and computation of physical drag coefficients
for complex objects (Mehta, Walker, Lawrence, et al., 2014).

References
Barlier, F., Berger, C., Falin, J. L., Kockarts, G., & Thuillier, G. (1978). A thermospheric model based on satellite drag data. Annales de

Geophysique, 34, 9–24.
Bayes, T. (1763). “An essay towards solving a Problem in the Doctrine of Chances.” Bayes’s essay as published in the Philosophical Transac-

tions of the Royal Society of London (Vol. 53, p. 370), on Google Books.
Berger, C., Biancale, R., Barlier, F., & Ill, M. (1998). Improvement of the empirical thermospheric model DTM: DTM94—A comparative

review of various temporal variations and prospects in space geodesy applications. Journal of Geodesy, 72, 161–178.
https://doi.org/10.1007/s001900050158

Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., & Burke, W. J. (2008). A new empirical thermospheric density model JB2008
using new solar and geomagnetic indices. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii.

Bowman, B. R., Tobiska, W. K., Marcos, F. A., & Valladares, C. (2008). The JB2006 empirical thermospheric density model. Journal of
Atmospheric and Solar-Terrestrial Physics, 70, 774–793. https://doi.org/10.1016/j.jastp.2007.10.002

Bruinsma, S. (2015). The DTM-2013 thermosphere model. Journal of Space Weather and Space Climate, 5(27), A1.
https://doi.org/10.1051/swsc/2015001

Bruinsma, S. L., Sanchez-Ortiz, N., Olmedo, E., & Guijarro, N. (2012). Evaluation of the DTM-2009 thermosphere model for benchmarking
purposes. Journal of Space Weather and Space Climate, 2(27), A04. https://doi.org/10.1051/swsc/2012005

Bruinsma, S., Thuillier, G., & Barlier, F. (2003). The DTM-2000 empirical thermosphere model with new data assimilation and
constraints at lower boundary: Accuracy and properties. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 1053–1070.
https://doi.org/10.1016/S1364-6826(03)00137-8

Codrescu, S. M., Codrescu, M. V., & Fedrizzi, M. (2018). An ensemble Kalman filter for the thermosphere-ionosphere. Space Weather, 16,
57–68. https://doi.org/10.1002/2017SW001752

Codrescu, M. V., Fuller-Rowell, T. J., & Minter, C. F. (2004). An ensemble-type Kalman fillter for neutral thermospheric composition during
geomagnetic storms. Space Weather, 2, S11002. https://doi.org/10.1029/2004SW000088

DeCarlo, R. A. (1989). Linear systems: A state variable approach with numerical implementation, Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.

Doornbos, E., Bruinsma, S., Fritsche, B., Koppenwallner, G., Visser, P., Van Den IJssel, J., & de Teixeira de Encarnacao, J. (2014). GOCE+ Theme
3: Air density and wind retrieval using GOCE data (Final Report). Netherlands: TU Delft.

Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., & Popescu, A. (2003). GOCE: ESA’s first Earth explorer core mission. In G. Beutler,
M. R. Drinkwater, R. Rummel, & R. von Steiger (Eds.), Earth Gravity Field from Space— From Sensors to Earth Sciences, Space Sciences Series
of ISSI (Vol. 17, pp. 419–432). Dordrecht: Kluwer.

Emmert, J. T., & Picone, J. M. (2010). Climatology of globally averaged thermospheric mass density. Journal of Geophysical Research, 115,
A09326. https://doi.org/10.1029/2010JA015298

Acknowledgments
The authors wish to acknowledge
support of this work by the Air Force’s
Office of Scientific Research under
contract FA9550-18-1-0149 issued by
Erik Blasch. The authors wish to thank
Humberto Godinez for insightful
discussion on existing methods for data
assimilation. The authors also wish to
thank the anonymous reviewers for
their helpful comments. No data were
generated as part of this work. The
CHAMP densities used in this work can
be downloaded at http://tinyurl.com/
densitysets. The GOCE densities data
are provided by the European Space
Agency and can be downloaded at
https://earth.esa.int/web/guest/missions/
esa-operational-missions/goce/
air-density-and-crosswind-data. The
TIE-GCM ROM used in this work can be
downloaded at the University of
Minnesota Digital Conservancy:
http://hdl.handle.net/11299/194705.

MEHTA AND LINARES 1099

https://doi.org/10.1007/s001900050158
https://doi.org/10.1016/j.jastp.2007.10.002
https://doi.org/10.1051/swsc/2015001
https://doi.org/10.1051/swsc/2012005
https://doi.org/10.1016/S1364-6826(03)00137-8
https://doi.org/10.1002/2017SW001752
https://doi.org/10.1029/2004SW000088
https://doi.org/10.1029/2010JA015298
http://tinyurl.com/densitysets
http://tinyurl.com/densitysets
https://earth.esa.int/web/guest/missions/esa-operational-missions/goce/air-density-and-crosswind-data
https://earth.esa.int/web/guest/missions/esa-operational-missions/goce/air-density-and-crosswind-data
https://earth.esa.int/web/guest/missions/esa-operational-missions/goce/air-density-and-crosswind-data
http://hdl.handle.net/11299/194705


Space Weather 10.1029/2018SW001875

Fuller-Rowell, T. J., Minter, C. F., & Codrescu, M. V. (2004). Data assimilation for neutral thermospheric species during geomagnetic storms,.
Radio Science, 39, RS1S03. https://doi.org/10.1029/2002RS002835

Godinez, H. C., Lawrence, E., Higdon, D., Ridley, A., Koller, J., & Klimenko, A. (2015). Specification of the ionosphere-thermosphere using the
ensemble Kalman Filter. In S. Ravela & A. Sandu (Eds.), Dynamic Data-Driven Environmental Systems Science (pp. 274–283). Cambridge,
United States: Springer International Publishing. https://doi.org/0.1007/978-3-319-25138-7_25

Hedin, A. E. (1983). A revised thermospheric model based on mass spectrometer and incoherent scatter data MSIS-83. Journal of
Geophysical Research, 88(A12), 10,170–10,188. https://doi.org/10.1029/JA088iA12p10170

Hedin, A. E. (1987). MSIS-86 thermospheric model. Journal of Geophysical Research, 92(A5), 4649–4662.
https://doi.org/10.1029/JA092iA05p04649

Hedin, A. E., Reber, C. A., Newton, G. P., Spencer, N. W., Salah, J. E., Evans, J. V., et al. (1977). A global thermospheric model based on mass
spectrometer and incoherent scatter data MSIS. I-N2 density and temperature. Journal of Geophysical Research, 82(16), 2139–2147.
https://doi.org/10.1029/JA082i016p02139

Jacchia, L. G. (1970). New static models of the thermosphere and exosphere with empirical temperature profiles. SAO Special Report, 313.
Kalman, R. E. (1960). “A new approach to linear filtering and prediction problems”. Journal of Basic Engineering, 82, 35.

https://doi.org/10.1115/1.3662552
Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. In A. M. Yaglam & V. I. Tatarsky (Eds.), Proceedings of the international

colloquium on the fine scale structure of the atmosphere and its influence on radio wave propagation. Moscow, Nauka: Doklady Akademii
Nauk SSSR.

Matsuo, T., Fedrizzi, M., Fuller-Rowell, T. J., & Codrescu, M. V. (2012). Data assimilation of thermospheric mass density. Space Weather, 10,
S05002. https://doi.org/10.1029/2012SW000773

Matsuo, T., & Forbes, J. M. (2010). Principal modes of thermospheric density variability: Empirical orthogonal function analysis of CHAMP
2001–2008 data. Journal of Geophysical Research, 115, A07309. https://doi.org/10.1029/2009JA015109

Matsuo, T., & Knipp, D. J. (2013). Thermospheric mass density specification: Synthesis of observations and models (AFRL Tech. Rep.,
DTIC ADA592729).

Matsuo, T., Lee, I.-T., & Anderson, J. L. (2013). Thermospheric mass density specification using an ensemble Kalman Filter. Journal of
Geophysical Research: Space Physics, 118, 1339–1350. https://doi.org/10.1002/jgra.50162

Mehta, P. M., & Linares, R. (2017). A methodology for reduced order modeling and calibration of the upper atmosphere. Space Weather, 15,
1270–1287. https://doi.org/10.1002/2017SW001642

Mehta, P. M., Linares, R. L., & Sutton, E. K. (2018). A quasi-physical dynamic reduced order model for thermospheric mass density via
Hermitian Space Dynamic Model Decomposition. Space Weather, 16, 569–588. https://doi.org/10.1029/2018SW001840

Mehta, P. M., Linares, R., & Sutton, E. K. (2018). A quasi-physical dynamic reduced order model for thermospheric mass density via Hermitian
space-dynamic mode decomposition. Space Weather, 16, 569–588. https://doi.org/10.1029/2018SW001840

Mehta, P. M., Walker, A. C., Lawrence, E., Linares, R. L., Higdon, D., & Koller, J. (2014). “Modeling satellite drag coefficients with response
surfaces”. Advances in Space Research, 54(8), 1590–1607. https://doi.org/10.1016/j.asr.2014.06.033

Mehta, P. M., Walker, A. C., McLaughlin, C. A., & Koller, J. (2014). “Comparing physical drag coefficients computed using different gas-surface
interaction models”. Journal of Spacecraft and Rockets, 51(3), 873–883. https://doi.org/10.2514/1.A32566

Mehta, P. M., Walker, A., Sutton, E., & Godinez, H. (2017). New density estimates derived using accelerometers on-board the CHAMP and
GRACE satellites. Space Weather, 15, 558–576. https://doi.org/10.1002/2016SW001562

Minter, C. F., Fuller-Rowell, T. J., & Codrescu, M. V. (2004). Estimating the state of the thermospheric composition using Kalman filtering.
Space Weather, 2, S04002. https://doi.org/10.1029/2003SW000006

Mockus, J. (1975). On Bayesian methods for seeking the extremum. In G. I. Marchuk (Ed.), Optimization Techniques IFIP Technical
Conference Novosibirsk, July 1-7, 1974. Optimization Techniques 1974. Lecture Notes in Computer Science (Vol. 27). Heidelberg:
Springer, Berlin. https://doi.org/10.1007/3-540-07165-2(55)

Morozov, A. V., Ridley, A. J., Bernstein, D. S., Collins, N., Hoar, T. J., & Anderson, J. L. (2013). Data assimilation and driver estimation for the
Global Ionosphere-Thermosphere Model using the Ensemble Adjustment Kalman Filter. Journal of Atmospheric and Solar-Terrestrial
Physics, 104, 126–136. https://doi.org/10.1016/j.jastp.2013.08.016

Murray, S. A., Henley, E. M., Jackson, D. R., & Bruinsma, S. L. (2015). Assessing the performance of thermospheric modeling with data
assimilation throughout solar cycles 23 and 24. Space Weather, 13, 220–232. https://doi.org/10.1002/2015SW001163

Picone, J. M., Hedin, A. E., & Drob, D. P. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues.
Journal of Geophysical Research, 107(A12), 1468. https://doi.org/10.1029/2002JA009430

Proctor, J. L., Kutz, J. N., & Brunton, S. L. (2016). Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems,
15(1), 142–161.

Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., et al. (2014). The NCAR TIE-GCM: A community model of the coupled
thermosphere/ionosphere system, Modeling the ionosphere-thermosphere system, AGU Geophysical Monograph Series (pp. 73–84).
Washington: John Wiley & Sons.

Radtke, J., Kebschull, C., & Stoll, E. (2017). Interactions of the space debris environment with mega constellations—Using the example of
the OneWeb constellation. Acta Astronautica, 131, 55–68. https://doi.org/10.1016/j.actaastro.2016.11.021

Reigber, C., Luhr, H., & Schwintzer, P. (2002). CHAMP mission status. Advances in Space Research, 30, 129–134.
https://doi.org/10.1016/S0273-1177(02)00276-4

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5–28.
https://doi.org/10.1017/S0022112010001217

Shim, J. S., Kuznetsova, M., Rasttter, L., Bilitza, D., Butala, M., Codrescu, M., et al. (2014). Systematic evaluation of ionosphere/
thermosphere (IT) models, Modeling the ionosphere-thermosphere system (pp. 145–160). Washington: John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781118704417.ch13

Storz, M. F., Bowman, B. R., Branson, J. I., Casali, S. J., & Tobiska, W. K. (2005). High Accuracy Satellite Drag Model (HASDM). Advances in Space
Research, 36(12), 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020

Sutton, E. K. (2018). A new method of physics-based data assimilation for the quiet and disturbed thermosphere. Space Weather, 16,
736–753. https://doi.org/10.1002/2017SW001785

Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early
results. Geophysical Research Letters, 31, L09607. https://doi.org/10.1029/2004GL019920

MEHTA AND LINARES 1100

https://doi.org/10.1029/2002RS002835
https://doi.org/0.1007/978-3-319-25138-7_25
https://doi.org/10.1029/JA088iA12p10170
https://doi.org/10.1029/JA092iA05p04649
https://doi.org/10.1029/JA082i016p02139
https://doi.org/10.1115/1.3662552
https://doi.org/10.1029/2012SW000773
https://doi.org/10.1029/2009JA015109
https://doi.org/10.1002/jgra.50162
https://doi.org/10.1002/2017SW001642
https://doi.org/10.1029/2018SW001840
https://doi.org/10.1029/2018SW001840
https://doi.org/10.1016/j.asr.2014.06.033
https://doi.org/10.2514/1.A32566
https://doi.org/10.1002/2016SW001562
https://doi.org/10.1029/2003SW000006
https://doi.org/10.1007/3-540-07165-2(55)
https://doi.org/10.1016/j.jastp.2013.08.016
https://doi.org/10.1002/2015SW001163
https://doi.org/10.1029/2002JA009430
https://doi.org/10.1016/j.actaastro.2016.11.021
https://doi.org/10.1016/S0273-1177(02)00276-4
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1002/9781118704417.ch13
https://doi.org/10.1016/j.asr.2004.02.020
https://doi.org/10.1002/2017SW001785
https://doi.org/10.1029/2004GL019920

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


