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PHYSICS-INFORMED MACHINE LEARNING RESULTS
We perform dimensionality reduction using both PCA and CAE. However,
because of the highly nonlinear nature of the system, PCA fails to capture
the dynamics. First 30 basis functions capture about 50% of the variance.

With CAE, we use a latent state dimension of 10 and 25. Preliminary results
(non-optimized) show that r = 25 performs better (as expected) in
reproducing the full state.

We then use the Long-Short Term Memory (LSTM) network to model the
temporal dynamics in the latent state space.

The LSTM model performs well in providing a one hour ahead dynamic
prediction accounting for the effects of input uncertainty. Only first eight
components are shown to save on space.

Highly nonlinear response of the system to the various input structures
highlights the importance of input uncertainty quantification.

INTRODUCTION
Space Weather can adversely impact technological infrastructure and
humans on ground and in space.

Geomagnetically Induced Currents (GICs) are driven by the interaction of
the solar wind and interplanetary magnetic field.

They can adversely impact most long, ground-based conductors such as
power grids, oil and gas pipelines, etc. They have been known to affect
power gridlines causing power outages for long periods.

Robust decision making in the context of space weather and its impacts
require accurate modeling and forecasting along with characterization of
the associated uncertainties. This is limited by the computational cost of
models.

Goal: Develop a Physics-based, Data-Driven Framework for
Modeling and Forecasting Space Weather and Quantification
of the Associated Uncertainties.

DATA PREPARATION
Data covering three years (part of 2016, 2017, 2018 and part of 2019) of
operational output from the Space Weather Modeling Framework
(SWMF) archived at NOAA was pre-processed.

Following a solar wind data gap of more than 2 hours, SWMF requires a
restart. The burn-in period after a restart precludes the data from use for
learning.

For demonstration here, we identify about a 3-month period with minimal
data gaps to learn temporal dynamics. The figure below shows the solar
wind inputs during the 100-day time period in 2018.

DIMENSIONALITY REDUCTION

IC: Comp Three Inc.

IC: Towards Data Science

IC: Prachi Joshi, PCA Blog

! ", $ ≈&
'()

*
+' $ ,'(")

The main idea behind dimensionality reduction is to
separate temporal and spatial variations.

The most common data-driven method for achieving this
is the Principal Component Analysis (PCA).

PCA identifies an optimal but linear subspace.
Therefore, for highly nonlinear systems, its applicability
is limited.
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Several methods exist to overcome the linear limitation of
PCA (e.g. nonlinear PCA, deep learning, etc.).

We use deep autoencoders (DAE) to achieve dimensionality
reduction. The latent state, /, is given by the bottleneck
layer of the DAE architecture.

The vanilla autoencoder requires fully connected layers
whereby the very large number of trainable model
parameters for high-dimensional systems result in
intractability.

We use the convolutional autoencoder (CAE) to overcome the limitation of fully connected
networks.

The mean grid error at one hour ahead prediction is about 11% (partially
optimized). The framework provides the ability to quantify the mean state
along with the uncertainty at any given time in the prediction.
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