
Conclusions
• In terms of the thermosphere, PCA has relatively low truncation errors 

during times of low geomagnetic activity.
• During storms, the nonlinear effects are no longer sufficiently captured 

by PCA.
• Linear AE essentially replicates PCA.
• CAE shows capability to effectively encode nonlinear dynamics.
• AEs in this work are only partially trained and require further 

training for optimization of the hyperparameters.

 Long Short-Term Memory (LSTM) Neural Network
• Previous work used LSTM to learn the temporal mapping, F, for the 

reduced state, α [3].

• The LSTM trained with PCA coefficients shows high errors during 
geomagnetically active periods when system is highly nonlinear. 

• The best LSTM at the time could make a dynamic hourly density 
forecast for an entire year with a mean error of ~12%.

• We expect to improve on this by using CAE for dimensionality 
reduction (see section on PCA vs Autoencoder).

 Introduction
• In low Earth orbit (LEO), atmospheric drag is the largest 

source of uncertainty when forecasting a satellite’s 
trajectory stemming from incomplete physical knowledge 
of the domain and uncertain input drivers.

• Physics-based models of the upper atmosphere are high 
dimensional, even at lower resolutions, inhibiting 
comprehensive analyses.

• Linear and nonlinear methods exist for dimensionality 
reduction (e.g. Proper Orthogonal Decomposition, and 
Deep Autoencoders).

• Low dimension representation allows for computationally 
inexpensive models to be developed, enabling 
probabilistic forecasts and supporting model-data fusion.

 Methodology
• Dimensionality reduction with Principal Component Analysis 

(PCA) as previously demonstrated [1].
• Linear and nonlinear Convolutional Autoencoders (CAE) 

(linear CAE should replicate PCA).
• Analyze truncation error between PCA and CAE.
• Investigate resulting latent space for both methods.
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  PCA vs Autoencoder
• PCA and CAE are both dimensionality reduction methods 

aimed to separate spatial and temporal variations.
• CAEs are non-trivial to train but can achieve nonlinear 

dimensionality reduction, unlike PCA.
• Comparison of PCA and partially trained CAE on 2001 TIE-

GCM data (figure below).

• Because PCA is linear, truncation error jumps by up to 
400% during active geomagnetic conditions when the 
system becomes highly nonlinear.

• Note: the AE is not currently optimized.

• Contours show absolute truncation error at 400 km during 
an extreme storm.

 Convolutional Autoencoder
• CAEs can take large datasets (in this problem: 24 x 20 x 16 x time) and reduce it down to a latent 

dimension of size <10 x time.
• A benefit to using CAEs, over other autoencoders, lies in its fewer model parameters. They are not 

fully connected resulting in quicker training and decreased likelihood of overfitting. 

 Latent Dimension Analysis

Linear Autoencoder
• The linear CAE mimics PCA.
• PCA provides the optimal order of the latent 

state, while CAE does not.
• However, having validated CAE for the 

system, we can introduce nonlinear 
activation functions for nonlinear 
dimensionality reduction.

Nonlinear Autoencoder
• Trained nonlinear CAEs with latent dimensions 5 and 10. 
• Both capture important physical features (e.g. semiannual 

trends) while reducing reconstruction error during active 
geomagnetic periods.

• Most of the energy from the thermosphere can be captured 
using first few PCA basis functions, therefore we expect the CAE 
with latent dimension 5 to outperform PCA once optimized. 

   

     Year-long dynamic prediction.         Week-long dynamic prediction.

The contribution of the first 20 PCA 
modes to the total energy [2].

     Nonlinear CAE (latent dimension 10) on 2001.      Nonlinear CAE (latent dimension 5) on 2001.
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